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Abstract:  This paper discusses the concept of model-driven software engineering applied to the Grid application domain.  

As an extension to this concept, the approach described here, attempts to combine both formal architecture-

centric and model-driven paradigms. It is a commonly recognized statement that Grid systems have seldom been 

designed using formal techniques although from past experience such techniques have shown advantages. This 

paper advocates a formal engineering approach to Grid system developments in an effort to contribute to the 

rigorous development of Grids software architectures. This approach addresses quality of service and cross-

platform developments by applying the model-driven paradigm to a formal architecture-centric engineering 

method. This combination benefits from a formal semantic description power in addition to model-based 

transformations. The result of such a novel combined concept promotes the re-use of design models and 

facilitates developments in Grid computing. 

1 INTRODUCTION 

The Grid paradigm is described in (Foster et al, 2001) 

as “a distributed computing infrastructure for advanced 

science and engineering” that can address the concept 

of “coordinated resource sharing and problem solving 

in dynamic, multi-institutional virtual organizations”. 

This coordinated sharing may be not only file 

exchange but can also provide direct access to 



 

computers, software, data and other system resources. 

Grid applications bundle different services using a 

heterogeneous pool of resources in a so-called virtual 

organization. This makes Grid applications very 

difficult to model and to implement.  

In addition, one of the major issues in today’s Grid 

engineering is that it often follows a code-driven 

approach. Although it has been proven from past 

experience that using structured engineering methods 

would ease the development process of any computing 

system and would reduce complexity, the inter-

disciplinarily of Grid computing is still encouraging 

‘brute-force’ coding and consequently a rather 

unstructured engineering process. This always leads to 

a loss of performance, interoperability problems and 

generally ends in very complex systems that only 

dedicated and expert developers can manage. As a 

direct consequence the resulting source code is neither 

re-usable nor does it promote dynamic adaptation 

facilities as if it were a true representation of the 

Service Oriented Architecture (SOA). Having no 

guidelines or rules in the design of a Grid-based 

application is a paradox since there are many existing, 

architectural approaches for distributed computing 

which could ease the engineering process, could enable 

rigorous engineering and could promote the re-use 

(Cox, 2004) of software components in future Grid 

developments.  

It is our belief that code-driven approaches and semi-

formal engineering methods in current use are 

insufficient to tackle tomorrow’s Grid developments. 

This paper provides a set of Grid specific models 

enacted within a novel engineering approach that 

implements the model-driven philosophy. Inside a 

well-defined and adapted formal approach, we 

investigate the enactment of our model-driven 

engineering process providing the tools to build the 

next generation of Grid applications. Thus, this paper 

emphasizes different aspects, which are, in our view, 

essential to Grid engineering: 

• it offers a user-friendly vision to Grid architects by 

 providing re-usable conceptual building 

blocks,  

• it hides the complexity of the final execution 

platform through abstraction models,  

• it promotes design re-use to facilitate further 

developments. 

To achieve these objectives, we combine two 

approaches together and seek advantages from each. 

On the one hand, we use the formal semantic 

descriptive power to model Grid applications; on the 

other hand, we use a model-driven approach to 

promote model re-use, model transformations, to hide 

the platform complexity and to refine abstract software 

descriptions to concrete ones.  

The remainder of this paper is structured as follows. 

Part 2 presents the approaches used, (i.e. Model 

Driven Engineering and Architecture-centric 

approach). Part 3 explains how model-driven 

engineering is enacted to design Grid applications. Part 

4 presents our formal architecture-centric model-driven 

approach and the means used to achieve it. Part 5 

illustrates the presented paradigms with a concrete 

example. Finally, we conclude with identifying future 

work and state the benefits of using the presented 

concept. 

2 MODEL-DRIVEN AND 

ARCHITECTURE CENTRIC 

APPROACHES 

2.1 The MDE Approach 

Model Driven Engineering MDE (Kent, 2002), 

probably derived from the OMG Model Driven 

Architecture MDA
TM
 (Kleppe et al, 2003) initiative, 

tackles the problem of system development by 

promoting the usage of models as the primary artefact 

to be constructed and maintained.  

Enacting the model-driven paradigm is not an easy 

route to follow since as yet there are few available 

frameworks designed and most of them are 

combinations of existing tools. Despite the lack of 

proper MDE tools, there are clear advantages from 

using and enacting it. Among such benefits that are 

valuable for Grid applications is providing system 

developers the capability to design systems efficiently 

in a heterogeneous and rapidly changing environment. 

Indeed, models being decoupled from platform 

technologies, system descriptions remain relevant and 

re-usable. 



 

2.2 A Combination of Approaches 

By convention and in order to separate clearly the 

concept described here from that of the OMG MDA
TM
, 

we call our approach a grid model-driven engineering 

approach (gMDE) and use a Grid-specific terminology. 

The OMG describes a design method based on model 

transformations according to meta-models, which is 

generic enough to fulfil any requirements in terms of 

modelling and re-use. However, most existing 

implementations of this paradigm provide only model 

to source code transformations, based on UML, where 

the Platform Independent Models (PIMs) are translated 

to Platform Specific Models (PSMs). In Grid 

engineering, when mapping system models to concrete 

platforms, it is often necessary to include model to 

model transformations to fill the gap between the 

abstract description and its concrete representation. In 

addition, model optimization requires the generation of 

intermediate models to compute and synchronize 

different views of a system. Providing model to model 

transformations as well as model to code 

transformations along the development process makes 

the approach more modular and also facilitates the 

final source code generation. In order to support this 

approach, we combine the model-driven philosophy to 

a well-established architecture-centric approach 

(Chaudet et al, 2000). 

Thus, we first define a set of key models to design a 

Grid application from the high level descriptions of 

each architectural element to its final deployment. In 

addition, we introduce the necessary semantics to 

generate, transform and check models along the design 

process. We consider architectural descriptions (from 

abstract to more concrete) as models. From this basis, 

transformations are applied to models and as a 

consequence to software architectures according to 

architect’s and platforms requirements. The end result 

of such iterative modifications and mappings being the 

concrete deployed application. 

Focusing on the model transformation aspects, we can 

notice similarities with the refinement concepts found 

in formal architecture-centric software engineering 

developments. The MDE can benefit from refinement 

to handle some of the model transformations and to 

ensure the models’ correctness. From the OMG’s 

vision, we  use the basic idea that consists of starting 

from a PIM to go to a PSM by means of 

transformations. Our approach follows such an idea in 

implementing the architecture-centric refinement (see 

section 3).  

 

 

3 A FORMAL ARCHITECTURE-

CENTRIC MDE APPROACH 

 
Following our gMDE paradigm (Manset et al, 2005), 

we address the challenge of designing, optimizing and 

adapting Grid-abstract architectures, with respect to 

different criteria, in order to automatically generate a 

complete set of Grid services to be deployed on a 

physical grid of resources. From the work we 

conducted in Grid engineering (Amendolia et al, 2005) 

we consider the Grid as a SOA and provide the means 

to specify system properties related to the Quality of 

Services QoS (Land, 2002) and Grid middleware 

platforms. Using formal semantics, we build a set of 

major models and investigate their orchestration along 

the gMDE design process. 

3.1 The gMDE Key Models 

In Grid engineering, design is largely affected by many 

constraints; these constraints are of different types and 

are introduced either by the architect when 

implementing QoS related features or by the target 

execution platform. Thus the MDE process dedicated 

to Grid engineering must take into account all of these 

aspects in providing the necessary models and 

semantics. By proposing several models (see figure 1), 

our approach separates concerns and addresses 

different aspects of Grid applications. Thus expertise 

management and capture are better than in classical 

approaches e.g. (Medvidovic et al, 1996). Each model 

represents an accurate aspect of the system, useful for 

conceptual understanding, analysis and refinement. 

Unlike the software engineering process where the 

system architecture is iteratively refined by the 

architect, most of the transformations in the gMDE are 

automated. The different models composing our 

process are defined as follows:  

• GEIM – Grid Environment Independent Model: 

an abstract description of the Grid application based on 

a formal ADL (Architecture Description Language) – 

using domain specific constructs, 



 

• GESM – Grid Environment Specific Model:  

a concrete architecture close to the final code and 

optimized according to a particular Grid middleware 

(execution platform) and QoS properties (a refined 

system description), 

• GECM – Grid Execution Constraint Model: a  

design pattern representing a particular QoS property, 

• GETM – Grid Environment Transformation  

Model: a design pattern representing a particular Grid 

platform.  

As a clarification of concept, we do not discuss in 

detail the other models composing our design process. 

However, these models can be defined as follows: 

• GEMM – Grid Environment Mapping Model: a  

model of translation between an architecture 

description language and an implementation language 

(i.e. that defines the mapping between the semantics of 

the GESM and a given programming language, for 

instance Java). 

• GERM – Grid Environment Resource Model: a  

model representing the physical constitution of the 

Grid. 

• GEDM – Grid Environment Deployment Model:  

a model specifying the distribution and deployment of 

the resulting application onto the grid set of resources, 

• GESA – Grid Environment Specific Application:  

the auto-generated source code of the application (i.e. 

obtained after GEMM translation). 

 

 
Figure 1: gMDE key models 

 

Figure 1 expresses the progressive design convergence 

of these models towards the generation of the final 

system source code (GESA) and its deployment over 

the physical infrastructure. This convergence is 

punctuated by different transformations (in nature and 

objectives). 

As is mentioned in section 2, our model-driven 

approach uses the architecture-centric refinement 

concept to decouple: 

• the abstract domain specific vision from the  

concrete implementation and 

• the architect’s functional specifications and non- 

functional requirements.  

As is depicted in figure 1, the models represent 

different views of the system.  Typically, non-

functional aspects – referred to as “Constraint View” - 

are defined inside the GECM and GETM models; 

unlike functional aspects – referred to as “Platform 

Independent View” - which are defined in the GEIM 

and GEIM’ (a specialized form of the GEIM) models.  

 

 
Figure 2: The gMDE development process 

 

Each of these two views owns a proper meta-model 

introducing a Grid domain terminology to facilitate the 

domain representation. Once the concrete system 

specification (GESM) has been obtained, it is 

translated into source code (GESA) using a mapping 

expressed in the GEMM model. This transformation 

and corresponding models are referred to as part of the  

“Concrete View”. Finally, the system distribution over 

a physical set of resources (an essential aspect of Grid 

computing) is also handled using models (the GEDM 



 

and the GERM) and transformations, constituting the 

“Physical View”.  

The GEIM, GETM and GESA are the only models 

visible and modifiable by the software architect during 

design, unlike others, which are automatically obtained 

from transformations.  

3.2 The gMDE Development Process 

Figure 2 introduces the orchestration of the previously 

presented models inside the gMDE design process. In 

the depicted process, a distinction is made between two 

major levels, one is the architecture level of 

transformation – above the broken lines - and the other 

is the implementation level of transformation – below 

the broken lines. Models and transformations can 

differ in nature and objectives. Thus models can be of 

two distinct types; either the model is manually created 

or it is automatically obtained by transformation. 

Transformations can then be of two different types; 

either the transformation is a composition of one or 

more refinement actions (model to model 

transformation) or it is a translation mapping (model to 

source code transformation). 

In the previous drawing, two different sets of QoS 

constraints were successively introduced (referred to as 

GECM 1 & 2). By introducing new models, the 

software architect can specialize an architecture 

progressively with respect to different sets of 

constraints. Once the system architecture complies 

with the expressed requirements, the software architect 

can specify a Grid execution platform. This is 

illustrated in figure 2 (referred to as the GETM for 

(gLite) and for (Globus) Grid platforms), two different 

middlewares were selected to obtain the adapted 

concrete system architecture, GESM.  Figure 2 also 

details the models and transformation types. The 

depicted process demonstrates the integration of 

multiple constraints by the introduction of models. The 

gMDE approach covers both model to model 

transformations and model to code transformations, 

which makes it flexible enough to tackle other aspects. 

Indeed, the process is not limited to what is expressed 

in figure 2 but can be extended to any sets of 

constraints, provided the corresponding model is 

expressed. This scalability is the direct result of the 

underlying formal architecture-centric model-driven 

approach. 
 

4 ENACTING MDE, A CONCRETE 

FRAMEWORK 

4.1 ArchWare: Formal Architecture-

centric Approach and Toolkit 

(ArchWare) is an engineering environment supporting 

the development of software systems through the use 

of a formal architecture-centric approach. This formal 

architecture-centric method enables the support of 

critical correctness requirements and provides tools to 

guarantee system properties. ArchWare provides a set 

of formal languages to enable reliable design, amongst 

them: (1) the ArchWare Architecture Description 

Language ADL (Oquendo et al, 2002), defined as a 

layered language for supporting both structural and 

behavioural descriptions as well as property 

definitions. This language is based on the π-calculus 

(Milner, 1999) and µ-calculus (Kozen, 1983), (2) the 

ArchWare Architecture Refinement Language ARL 

(Oquendo et al, 2004), used to describe software 

architectures (based on the Component and Connector 

architectural style) and to refine them accordingly to 

transformation rules. 

These languages used together constitute the 

ArchWare environment framework. As mentioned in 

section 2, there are noticeable conceptual similarities 

between some of the gMDE model transformations and 

software architecture refinement operations. From our 

point of view, refinement is considered as an 

architecture-level transformation. Thus, the rest of this 

paper investigates the ArchWare refinement process 

,which is, we believe, essential to the enactment of our 

formal architecture-centric MDE approach. 

4.2 The ArchWare Refinement Concept 

Complex systems cannot be designed in one single 

step. In a stepwise architecture refinement, a sequence 

of modifications is applied on a system abstract model, 

which leads to a concrete, implementation-centred 

model of the architecture. These refinement steps can 

be carried out along two directions: “vertical” and 

“horizontal”. The concrete architecture of a large 

software system is often developed through a “vertical” 

hierarchy of related architectures. An architecture 

hierarchy is a linear sequence of two or more 



 

architectures that may differ with respect to a variety of 

aspects. In general, an abstract architecture is simpler 

and easier to understand, while a concrete architecture 

reflects more implementation concerns. “Vertical” 

refinement steps add more and more details to abstract 

models until the concrete architectural model has been 

described. A refinement step typically leads to a more 

detailed architectural model that increases the 

determinism while implying properties of the abstract 

model. “Horizontal” refinement concerns the 

application of different refinement actions on different 

parts of the same abstract architecture, for instance, by 

partitioning an abstract component into different pieces 

at the same abstraction level. The ArchWare ARL 

language is the formal expression of these refinement 

operations, which aims at preserving upper abstract 

architecture properties while modifying it. The 

ArchWare environment supports at each level of the 

design process the re-use of existing architectural 

models and, at the concrete level, architecture-based 

code generation. As is demonstrated in [24], the 

ArchWare approach handles an exhaustive set of 

refinement actions. The semantics of such actions are 

expressed as follows: 
refDefinition::=on a : architecture action actionName is refinement ( 

actionParameter0 , actionParametern ) 

{ 

[ pre is { condition } ] 

[ post is { condition } ] 

[ transformation is { refExpression } ] 

} [ assuming { property } ] 

Each refinement action, hereinbefore referred to as 

actionName, specifies a refinement action to apply on 

an architecture “a”, as well as pre- and post- 

conditions.  

4.3 A Refinement Process for gMDE  

The gMDE approach focuses on both directions of 

refinement i.e. the “vertical” and the “horizontal”. The 

intention is not only to refine an architecture to a 

concrete and “close to final” code form, but also to 

adapt it according to constraints. This paper proposes 

two ways of using the model transformations. One 

consists of optimizing a given system abstract 

architecture according to expressed developers’ 

requirements in terms of QoS. The second consists of 

adapting an architecture according to a Grid 

middleware. Respectively: 

- Each QoS property is represented by a design pattern. 

This representation is then adapted to the current 

software architecture by refinement. 

- Each platform is represented by a design pattern and 

corresponding architectural properties. The system 

software architecture is then adapted to this platform 

by refinement as well.  

To do so, the ARL expressiveness had to be extended 

with respect to the Grid domain. The next sections 

details our complementary semantic and its usage. 

4.4 Grid Domain Specific Language 

Enabling the gMDE requires the expression and 

consideration of new semantics. Indeed, as mentioned 

in section 3.1, the “Platform Independent View” and 

“Constraint View” are based on different meta-models. 

Thus the gMDE approach uses a Domain Specific 

Language (DSL) based on the SOA paradigm, which is 

a specialisation of the ARL language.  

Figure 3 shows the different meta-models and their 

mapping, allowing the description of proper Grid 

services and their associated constraints. As a 

consequence the system architecture (GEIM) is 

respectively considered as a set of services by the 

software architect and is then mapped to the 

component-connector representation, which is 

computable. This paradigm mapping is a key element 

in our gMDE approach. The software architect can 

focus mainly on his domain requirements and benefits 

of the architecture-centric facilities to refine his 

system. 
 

 
Figure 3: The grid domain specific language 

 

As an example, the following is a generic description 

of a Grid architecture (voluntary simplified): 

gridArchitectureRef is GridSOAArchitecture where { 



 

   structure is { 

      serviceName is style serviceTypeRef where { 

            structure is {… service internal structure description … } 

            connection is { … service connections descriptions … } 

            constraint is { … QoS and / or platform constraints mappings … } 

      } … 

   } 

   link is { 

            attach serviceName0 to serviceName1 . 

  }}   

The Grid architecture hereinbefore referred to as 

gridArchitectureRef is expressed in terms of services 

(e.g. referred to as serviceName), structure, 

connections and constraints.  

Like the GEIM model, the GECM and GETM models 

are expressed using the same semantic. Following is 

the meta-model representing a constraint (of type QoS 

or Grid middleware).  

constraintName is constraintTypeRef { 

           on a:architecture actions {  

                actionRef elemRef is typeRef {…  element description …         }         

           on b:architecturalElement actions { 

                actionRef b . 

                actionRef b . 

          …}}… 

The constraint, referred to as constraintName, is 

specified in terms of architectural elements (e.g. 

referred to as elemRef) providing its core 

functionalities and high-level refinement actions (e.g. 

referred to as actionRef) to be applied to one or more 

target elements “b”. Using this semantic, a wide variety 

of QoS and Grid platforms constraints can be 

expressed and concretely used along the gMDE design 

process. Given the flexibility of our formal model-

driven approach and relying on the correctness of our 

models, the resulting technique is able to tackle every 

aspect of software architecture transformations needed 

in Grid developments. These models and the enacted 

gMDE design process constitute the core of our gMDE 

environment (called gMDEnv – not detailed in this 

paper). 

5 THE MDEGRID EXAMPLE 

In order to demonstrate the core gMDE concepts, we 

introduce here the mdeGrid system example. For 

clarification, this example only treats the application of 

one QoS constraint model.  

The mdeGrid system aims at providing clients, round-

the-clock access to data stored in the Grid. 

 
Figure 4: The mdeGrid system architecture 

 

To provide such functionality, the mdeGrid system 

software architecture has been described as a set of 

services with dedicated roles. As detailed in the figure 

4, the system architecture features three main services: 

- The Portal : in charge of delivering data and 

answering to clients’ requests. This service handles 

interactions with other Grid services in order to satisfy 

the client’s request.  

- The DataCacheHandler : this service collects and 

caches data queried from the grid through the 

genericGridInterface service. It updates this data 

automatically by checking it periodically and 

downloading if necessary. 

- The genericGridInterface : this service represents the 

interface to a given grid middleware. (NB: this 

interface is considered as generic until the Grid 

platform is selected as explained later in the example). 

 
archetype mdeGrid is architecture { 

  types is {…} 

  ports is {…} 

  behaviour is {  

    archetype Portal is component {…} . 

    archetype genericGridInterface is component{…} . 

    archetype DataCacheHandler is component { 

      types is { type Data is any . type resultSet is tuple [String, String] } 

      ports is { 

                   archetype ComsP0 is port { 

                      incoming is {ComsIncP0C0 is connection ( resultSet )} 

                      outgoing is {ComsOutP0C0 is connection ( Data )} 

                   } . 

                   archetype ComsP1 is port { 

                      incoming is {ComsIncC0 is connection (Data)} 

                      outgoing is {ComsOutC0 is connection (resultSet)} 

                   }  } 

      behaviour is { 

                  --<faulttolerance::priority:1,range:1>-- 

                  value resultSet is connection (Data); 

  value query := “the query expression…”; 

                  recursive value readGridDBEntries is abstraction(); 

                  { 

                     via ComsOutP0C0 send query; 

                     via ComsIncP0C0 receive res:resultSet; 

    updateLocalCachedDB(res); 

                     readGridDB(); 

                  }; 

                  recursive value clientDataRequest is abstraction(); 

                  { 

                     via ComsOutP1C0 receive clientRequest:request; 

                     res := processClientRequest(clientRequest); 

                     via ComsIncP1C0 send res; 

                     cacheClientResultSet(res); 

                     clientDataRequest(); 

                  }; ... 



 

                  compose { 

                     readGridDB() and clientDataRequest() 

                  }}}{  

unifies DataCacheHandler::ComsP1::ComsIncC1 

 with Portal::PortComsP0::PortComsOutC0 ...  }} 

Figure 5: The mdeGrid architecture specification 

 

Using our DSL, the system software architecture is 

specified and then transformed into ARL (see figure 

5), which constitutes the GEIM model - presented in 

section 3.1. (NB: for clarification, the software 

architecture description is simplified, i.e. types, ports, 

connections and behaviours are not expressed). Once 

the system architecture is specified, the software 

architect can express non-functional requirements. As 

an instance, it is relevant in the mdeGrid architecture 

to ensure fault-tolerance over the DataCacheHandler 

service to guarantee uninterrupted data access to 

clients. To explicitly indicate that this service should 

be fault-tolerant, the software architect assigns it a 

constraint mapping. The mapping declaration is split 

into three parts as detailed below. The first part 

specifies its nature, the second its priority with respect 

to other constraints and thirdly its range/level. This 

constraint mapping is attached to the architectural 

element as an annotation inside the GEIM model 

following this scheme: “--

<constraintRef::priority:#,range:#>--“ (see the 

DataCacheHandler architectural element description 

in figure 5 for a detailed example of mapping). Once 

analyzed during the gMDE design process, the 

corresponding constraint design pattern is selected by 

the system (see figure 6). The following definition is a 

simplified representation of the Fault-Tolerance design 

pattern: 

 
FT is qualityOfServiceProperty { 

    on mdeGrid:architecture actions { 

        include FTConnector is connector { 

             … connector architectural description …} 

        on DataCacheHandler :architecturalElement actions{ 

             replicate DataCacheHandler  to DataCacheHandlerClone0; 

             unify DataCacheHandler::ComsP0::ComsOutC0 with  

                FTConnector:: genericGridInterfaceComsP0::genericGridInterfaceIncC0 . 

}}…              

Figure 6: The fault-tolerance GECM 

 

Our engineering environment (gMDEnv) then proceeds 

to the elaboration of the transformation model needed 

to fix the non-functional requirement. This is what is 

shown in figure 7. Inside the gMDEnv, a model-driven 

approach is enacted for the predictive non-functional 

and functional analysis of architectural elements. From 

the original GEIM model, the system analyzes the 

different constraint mappings and generates a 

satisfactory model of atomic transformations to apply 

with respect to the corresponding constraint design 

pattern.  

The analysis conducted by the system is an heuristic 

method to determine constraint compatibilities and 

solutions among architectural elements and design 

patterns. The system tries to map constraints between 

architectural elements through inference rules and 

selects which transformation is the best suited. This 

iterative process leads progressively to the elaboration 

of a satisfactory transformation model applicable in 

context. This transformation is explained in figure 7 

and constitutes an example of the first part of the 

gMDE design process. In the resulting architecture (the 

GEIM’), the fault-tolerance has been provided by the 

introduction of a new connector “FTConnector” – a 

representation of a known pattern for fault-tolerance 

handling - and the replication of the 

DataCacheHandler architectural element as a recovery 

service. 

 

 
Figure 7: A gMDE model transformation 

 

Figure 8 details the obtained new mdeGrid system 

description: 
 

behaviour is { 

    archetype Portal is component {…} . 

    archetype genericGridInterface is component{…} . 

    archetype DataCacheHandlerClone0 is component {…} . 

    archetype DataCacheHandler is component { 

        behaviour is { 



 

         archetype FTConnector is connector { … 

            behaviour is { 

               recursive value availabilityChecking is abstraction(); 

               { 

                         if (serviceDown) value serviceRedirectionURL :=                                      

                                 DataCacheHandlerClone0; 

                         availabilityChecking(); 

               }; 

               compose { availabilityChecking() } 

            } . 

        recursive value readGridDBEntries is abstraction(); 

        {…}; 

        recursive value clientDataRequest is abstraction(); 

        {…}; ... 

     compose {readGridDB() and clientDataRequest()}... } 

Figure 8: The DataCacheHandler new behaviour 

 

Thus, the clients’ requests (through the Portal service) 

are re-directed to the clone service in case of a service 

failure. The same approach is undertaken when 

adapting the specified system architecture to a 

particular Grid middleware. The genericGridInterface 

architectural element is refined by model 

transformation so that the system architecture satisfies 

the architectural constraints implied by the design 

pattern. 

As a conclusion, the model-driven paradigm enables 

the introduction of well-known design patterns for 

every aspect whether functional or not. For example, 

other patterns can be introduced for non-functional 

requirements like load balancing, security, 

performance, cost policies etc. However, for 

simplification matters, we do not discuss these in this 

paper although they are treated in our gMDE 

engineering environment (gMDEnv).  

6 OUTLOOK AND CONCLUSION 

In this paper we presented a technique for specifying 

Grid applications by modeling and by transforming 

these models to automate their adaptation to specific 

platforms and QoS constraints. We introduced an 

example to illustrate how the approach tackles QoS 

specifications in addition to platform requirements. 

Our investigation has lead to the elaboration of a wide 

range of frequently used Grid platforms and QoS 

constraint models. The efficiency of the approach 

relies strongly on the correctness of these models; 

consequently great care is being taken to ensure this. 

As a proof of concept, the engineering framework 

being developed (gMDEnv) enacts the combination of 

the formal architecture-centric and model-driven 

approaches introduced previously. In its current state, 

it is already capable of handling most of the presented 

models and transformations.  

Since this approach is based on the concepts of re-use 

and execution platform independence, our engineering 

framework scope is not limited to the Grid domain. 

The same approach can tackle other developments 

based on the SOA vision such as web service-based 

applications (i.e. online traders, booking systems, 

video on demand systems etc). Thus, the benefits of 

using the gMDE are numerous. Formal application 

models designed using our framework are persistent 

and re-usable. For instance, one can use libraries and 

previously stored models to design new applications. 

The approach is scalable; one can extend the scope 

limitation of the framework by providing the 

corresponding new constraint and mapping models. 

From the establishment of well-known architectural 

concepts, the framework brings a high level of 

description to the user while promoting user-

friendliness through a simple semi-automated graphical 

user interface (see figure 9).  

 

 
Figure 9: The gMDEnv graphical user interfaces 

 

Finally, with respect to model transformations, an 

interesting area of future research is the development 

of a decision system to support users through model-

driven transformations. Indeed, some of the 

adaptations required to satisfy platforms and QoS 

constraints can lead to critical decisions. We are using 

examples such as the one described in section 5 and 

the MammoGrid development experience (Amendolia 

et al, 2005), to elicit the framework requirements. The 

gMDEnv and the presented approach are currently in 

use to evaluate potential advantages in the 



 

development process of the MammoGrid application. 

There are clearly identified issues in the development 

of MammoGrid on which the gMDEnv emphasizes, 

such as adapting the system to other Grid platforms, 

improving the global application security level or 

porting the system to different programming 

languages. From these case studies, the preliminary 

conclusions are encouraging and show the relevance of 

this formal model-driven paradigm applied to the Grid 

domain.  

This paper is a first investigation of the model-driven 

paradigm enactment using established formal 

architecture-centric concepts. Besides supporting the 

usefulness of the ArchWare ARL language, we are 

able to draw a number of conclusions. We learned that 

the model-driven approach is a very useful paradigm 

when addressing cross-platform developments and 

problems of re-use but it must be dependent on a 

rigorous basis to be efficient. The formal dimension 

brought by ArchWare is one of the key points of our 

successful implementation, especially in using a formal 

refinement language. Similarly we learned that QoS 

attributes are not easy to quantify in models. There is a 

true lack of standards that could help significantly 

when considering resource comparisons. In the context 

of other engineering frameworks and given the 

concepts we have now in hand, our approach can 

provide relevant benefits to the practice of Grid system 

engineering. From our experience, we believe that the 

presented approach is an important contribution to the 

development of new Grid systems. 
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