

A FORMAL ARCHITECTURE-CENTRIC MODEL-DRIVEN

APPROACH FOR THE AUTOMATIC GENERATION OF GRID

APPLICATIONS

David Manset
1,2,3

2 ETT Division, CERN 1211, Geneva 23, Switzerland

david.manset@cern.ch

Hervé Verjus
3

3 LISTIC, University of Savoie, Annecy, France

herve.verjus@univ-savoie.fr

Richard McClatchey
1

1 CCCS, University West of England, Bristol, UK

richard.mcclatchey@cern.ch

Flavio Oquendo
4

4 VALORIA, University of South Brittany, Vannes, France

Flavio.Oquendo@univ-ubs.fr

Keywords: MDE, Grid, Software Architectures, Model Transformation, Refinement, ADLs.

Abstract: This paper discusses the concept of model-driven software engineering applied to the Grid application domain.

As an extension to this concept, the approach described here, attempts to combine both formal architecture-

centric and model-driven paradigms. It is a commonly recognized statement that Grid systems have seldom been

designed using formal techniques although from past experience such techniques have shown advantages. This

paper advocates a formal engineering approach to Grid system developments in an effort to contribute to the

rigorous development of Grids software architectures. This approach addresses quality of service and cross-

platform developments by applying the model-driven paradigm to a formal architecture-centric engineering

method. This combination benefits from a formal semantic description power in addition to model-based

transformations. The result of such a novel combined concept promotes the re-use of design models and

facilitates developments in Grid computing.

1 INTRODUCTION

The Grid paradigm is described in (Foster et al, 2001)

as “a distributed computing infrastructure for advanced

science and engineering” that can address the concept

of “coordinated resource sharing and problem solving

in dynamic, multi-institutional virtual organizations”.

This coordinated sharing may be not only file

exchange but can also provide direct access to

computers, software, data and other system resources.

Grid applications bundle different services using a

heterogeneous pool of resources in a so-called virtual

organization. This makes Grid applications very

difficult to model and to implement.

In addition, one of the major issues in today’s Grid

engineering is that it often follows a code-driven

approach. Although it has been proven from past

experience that using structured engineering methods

would ease the development process of any computing

system and would reduce complexity, the inter-

disciplinarily of Grid computing is still encouraging

‘brute-force’ coding and consequently a rather

unstructured engineering process. This always leads to

a loss of performance, interoperability problems and

generally ends in very complex systems that only

dedicated and expert developers can manage. As a

direct consequence the resulting source code is neither

re-usable nor does it promote dynamic adaptation

facilities as if it were a true representation of the

Service Oriented Architecture (SOA). Having no

guidelines or rules in the design of a Grid-based

application is a paradox since there are many existing,

architectural approaches for distributed computing

which could ease the engineering process, could enable

rigorous engineering and could promote the re-use

(Cox, 2004) of software components in future Grid

developments.

It is our belief that code-driven approaches and semi-

formal engineering methods in current use are

insufficient to tackle tomorrow’s Grid developments.

This paper provides a set of Grid specific models

enacted within a novel engineering approach that

implements the model-driven philosophy. Inside a

well-defined and adapted formal approach, we

investigate the enactment of our model-driven

engineering process providing the tools to build the

next generation of Grid applications. Thus, this paper

emphasizes different aspects, which are, in our view,

essential to Grid engineering:

• it offers a user-friendly vision to Grid architects by

 providing re-usable conceptual building

blocks,

• it hides the complexity of the final execution

platform through abstraction models,

• it promotes design re-use to facilitate further

developments.

To achieve these objectives, we combine two

approaches together and seek advantages from each.

On the one hand, we use the formal semantic

descriptive power to model Grid applications; on the

other hand, we use a model-driven approach to

promote model re-use, model transformations, to hide

the platform complexity and to refine abstract software

descriptions to concrete ones.

The remainder of this paper is structured as follows.

Part 2 presents the approaches used, (i.e. Model

Driven Engineering and Architecture-centric

approach). Part 3 explains how model-driven

engineering is enacted to design Grid applications. Part

4 presents our formal architecture-centric model-driven

approach and the means used to achieve it. Part 5

illustrates the presented paradigms with a concrete

example. Finally, we conclude with identifying future

work and state the benefits of using the presented

concept.

2 MODEL-DRIVEN AND

ARCHITECTURE CENTRIC

APPROACHES

2.1 The MDE Approach

Model Driven Engineering MDE (Kent, 2002),

probably derived from the OMG Model Driven

Architecture MDA
TM
 (Kleppe et al, 2003) initiative,

tackles the problem of system development by

promoting the usage of models as the primary artefact

to be constructed and maintained.

Enacting the model-driven paradigm is not an easy

route to follow since as yet there are few available

frameworks designed and most of them are

combinations of existing tools. Despite the lack of

proper MDE tools, there are clear advantages from

using and enacting it. Among such benefits that are

valuable for Grid applications is providing system

developers the capability to design systems efficiently

in a heterogeneous and rapidly changing environment.

Indeed, models being decoupled from platform

technologies, system descriptions remain relevant and

re-usable.

2.2 A Combination of Approaches

By convention and in order to separate clearly the

concept described here from that of the OMG MDA
TM
,

we call our approach a grid model-driven engineering

approach (gMDE) and use a Grid-specific terminology.

The OMG describes a design method based on model

transformations according to meta-models, which is

generic enough to fulfil any requirements in terms of

modelling and re-use. However, most existing

implementations of this paradigm provide only model

to source code transformations, based on UML, where

the Platform Independent Models (PIMs) are translated

to Platform Specific Models (PSMs). In Grid

engineering, when mapping system models to concrete

platforms, it is often necessary to include model to

model transformations to fill the gap between the

abstract description and its concrete representation. In

addition, model optimization requires the generation of

intermediate models to compute and synchronize

different views of a system. Providing model to model

transformations as well as model to code

transformations along the development process makes

the approach more modular and also facilitates the

final source code generation. In order to support this

approach, we combine the model-driven philosophy to

a well-established architecture-centric approach

(Chaudet et al, 2000).

Thus, we first define a set of key models to design a

Grid application from the high level descriptions of

each architectural element to its final deployment. In

addition, we introduce the necessary semantics to

generate, transform and check models along the design

process. We consider architectural descriptions (from

abstract to more concrete) as models. From this basis,

transformations are applied to models and as a

consequence to software architectures according to

architect’s and platforms requirements. The end result

of such iterative modifications and mappings being the

concrete deployed application.

Focusing on the model transformation aspects, we can

notice similarities with the refinement concepts found

in formal architecture-centric software engineering

developments. The MDE can benefit from refinement

to handle some of the model transformations and to

ensure the models’ correctness. From the OMG’s

vision, we use the basic idea that consists of starting

from a PIM to go to a PSM by means of

transformations. Our approach follows such an idea in

implementing the architecture-centric refinement (see

section 3).

3 A FORMAL ARCHITECTURE-

CENTRIC MDE APPROACH

Following our gMDE paradigm (Manset et al, 2005),

we address the challenge of designing, optimizing and

adapting Grid-abstract architectures, with respect to

different criteria, in order to automatically generate a

complete set of Grid services to be deployed on a

physical grid of resources. From the work we

conducted in Grid engineering (Amendolia et al, 2005)

we consider the Grid as a SOA and provide the means

to specify system properties related to the Quality of

Services QoS (Land, 2002) and Grid middleware

platforms. Using formal semantics, we build a set of

major models and investigate their orchestration along

the gMDE design process.

3.1 The gMDE Key Models

In Grid engineering, design is largely affected by many

constraints; these constraints are of different types and

are introduced either by the architect when

implementing QoS related features or by the target

execution platform. Thus the MDE process dedicated

to Grid engineering must take into account all of these

aspects in providing the necessary models and

semantics. By proposing several models (see figure 1),

our approach separates concerns and addresses

different aspects of Grid applications. Thus expertise

management and capture are better than in classical

approaches e.g. (Medvidovic et al, 1996). Each model

represents an accurate aspect of the system, useful for

conceptual understanding, analysis and refinement.

Unlike the software engineering process where the

system architecture is iteratively refined by the

architect, most of the transformations in the gMDE are

automated. The different models composing our

process are defined as follows:

• GEIM – Grid Environment Independent Model:

an abstract description of the Grid application based on

a formal ADL (Architecture Description Language) –

using domain specific constructs,

• GESM – Grid Environment Specific Model:

a concrete architecture close to the final code and

optimized according to a particular Grid middleware

(execution platform) and QoS properties (a refined

system description),

• GECM – Grid Execution Constraint Model: a

design pattern representing a particular QoS property,

• GETM – Grid Environment Transformation

Model: a design pattern representing a particular Grid

platform.

As a clarification of concept, we do not discuss in

detail the other models composing our design process.

However, these models can be defined as follows:

• GEMM – Grid Environment Mapping Model: a

model of translation between an architecture

description language and an implementation language

(i.e. that defines the mapping between the semantics of

the GESM and a given programming language, for

instance Java).

• GERM – Grid Environment Resource Model: a

model representing the physical constitution of the

Grid.

• GEDM – Grid Environment Deployment Model:

a model specifying the distribution and deployment of

the resulting application onto the grid set of resources,

• GESA – Grid Environment Specific Application:

the auto-generated source code of the application (i.e.

obtained after GEMM translation).

Figure 1: gMDE key models

Figure 1 expresses the progressive design convergence

of these models towards the generation of the final

system source code (GESA) and its deployment over

the physical infrastructure. This convergence is

punctuated by different transformations (in nature and

objectives).

As is mentioned in section 2, our model-driven

approach uses the architecture-centric refinement

concept to decouple:

• the abstract domain specific vision from the

concrete implementation and

• the architect’s functional specifications and non-

functional requirements.

As is depicted in figure 1, the models represent

different views of the system. Typically, non-

functional aspects – referred to as “Constraint View” -

are defined inside the GECM and GETM models;

unlike functional aspects – referred to as “Platform

Independent View” - which are defined in the GEIM

and GEIM’ (a specialized form of the GEIM) models.

Figure 2: The gMDE development process

Each of these two views owns a proper meta-model

introducing a Grid domain terminology to facilitate the

domain representation. Once the concrete system

specification (GESM) has been obtained, it is

translated into source code (GESA) using a mapping

expressed in the GEMM model. This transformation

and corresponding models are referred to as part of the

“Concrete View”. Finally, the system distribution over

a physical set of resources (an essential aspect of Grid

computing) is also handled using models (the GEDM

and the GERM) and transformations, constituting the

“Physical View”.

The GEIM, GETM and GESA are the only models

visible and modifiable by the software architect during

design, unlike others, which are automatically obtained

from transformations.

3.2 The gMDE Development Process

Figure 2 introduces the orchestration of the previously

presented models inside the gMDE design process. In

the depicted process, a distinction is made between two

major levels, one is the architecture level of

transformation – above the broken lines - and the other

is the implementation level of transformation – below

the broken lines. Models and transformations can

differ in nature and objectives. Thus models can be of

two distinct types; either the model is manually created

or it is automatically obtained by transformation.

Transformations can then be of two different types;

either the transformation is a composition of one or

more refinement actions (model to model

transformation) or it is a translation mapping (model to

source code transformation).

In the previous drawing, two different sets of QoS

constraints were successively introduced (referred to as

GECM 1 & 2). By introducing new models, the

software architect can specialize an architecture

progressively with respect to different sets of

constraints. Once the system architecture complies

with the expressed requirements, the software architect

can specify a Grid execution platform. This is

illustrated in figure 2 (referred to as the GETM for

(gLite) and for (Globus) Grid platforms), two different

middlewares were selected to obtain the adapted

concrete system architecture, GESM. Figure 2 also

details the models and transformation types. The

depicted process demonstrates the integration of

multiple constraints by the introduction of models. The

gMDE approach covers both model to model

transformations and model to code transformations,

which makes it flexible enough to tackle other aspects.

Indeed, the process is not limited to what is expressed

in figure 2 but can be extended to any sets of

constraints, provided the corresponding model is

expressed. This scalability is the direct result of the

underlying formal architecture-centric model-driven

approach.

4 ENACTING MDE, A CONCRETE

FRAMEWORK

4.1 ArchWare: Formal Architecture-

centric Approach and Toolkit

(ArchWare) is an engineering environment supporting

the development of software systems through the use

of a formal architecture-centric approach. This formal

architecture-centric method enables the support of

critical correctness requirements and provides tools to

guarantee system properties. ArchWare provides a set

of formal languages to enable reliable design, amongst

them: (1) the ArchWare Architecture Description

Language ADL (Oquendo et al, 2002), defined as a

layered language for supporting both structural and

behavioural descriptions as well as property

definitions. This language is based on the π-calculus

(Milner, 1999) and µ-calculus (Kozen, 1983), (2) the

ArchWare Architecture Refinement Language ARL

(Oquendo et al, 2004), used to describe software

architectures (based on the Component and Connector

architectural style) and to refine them accordingly to

transformation rules.

These languages used together constitute the

ArchWare environment framework. As mentioned in

section 2, there are noticeable conceptual similarities

between some of the gMDE model transformations and

software architecture refinement operations. From our

point of view, refinement is considered as an

architecture-level transformation. Thus, the rest of this

paper investigates the ArchWare refinement process

,which is, we believe, essential to the enactment of our

formal architecture-centric MDE approach.

4.2 The ArchWare Refinement Concept

Complex systems cannot be designed in one single

step. In a stepwise architecture refinement, a sequence

of modifications is applied on a system abstract model,

which leads to a concrete, implementation-centred

model of the architecture. These refinement steps can

be carried out along two directions: “vertical” and

“horizontal”. The concrete architecture of a large

software system is often developed through a “vertical”

hierarchy of related architectures. An architecture

hierarchy is a linear sequence of two or more

architectures that may differ with respect to a variety of

aspects. In general, an abstract architecture is simpler

and easier to understand, while a concrete architecture

reflects more implementation concerns. “Vertical”

refinement steps add more and more details to abstract

models until the concrete architectural model has been

described. A refinement step typically leads to a more

detailed architectural model that increases the

determinism while implying properties of the abstract

model. “Horizontal” refinement concerns the

application of different refinement actions on different

parts of the same abstract architecture, for instance, by

partitioning an abstract component into different pieces

at the same abstraction level. The ArchWare ARL

language is the formal expression of these refinement

operations, which aims at preserving upper abstract

architecture properties while modifying it. The

ArchWare environment supports at each level of the

design process the re-use of existing architectural

models and, at the concrete level, architecture-based

code generation. As is demonstrated in [24], the

ArchWare approach handles an exhaustive set of

refinement actions. The semantics of such actions are

expressed as follows:
refDefinition::=on a : architecture action actionName is refinement (

actionParameter0 , actionParametern)

{

[pre is { condition }]

[post is { condition }]

[transformation is { refExpression }]

} [assuming { property }]

Each refinement action, hereinbefore referred to as

actionName, specifies a refinement action to apply on

an architecture “a”, as well as pre- and post-

conditions.

4.3 A Refinement Process for gMDE

The gMDE approach focuses on both directions of

refinement i.e. the “vertical” and the “horizontal”. The

intention is not only to refine an architecture to a

concrete and “close to final” code form, but also to

adapt it according to constraints. This paper proposes

two ways of using the model transformations. One

consists of optimizing a given system abstract

architecture according to expressed developers’

requirements in terms of QoS. The second consists of

adapting an architecture according to a Grid

middleware. Respectively:

- Each QoS property is represented by a design pattern.

This representation is then adapted to the current

software architecture by refinement.

- Each platform is represented by a design pattern and

corresponding architectural properties. The system

software architecture is then adapted to this platform

by refinement as well.

To do so, the ARL expressiveness had to be extended

with respect to the Grid domain. The next sections

details our complementary semantic and its usage.

4.4 Grid Domain Specific Language

Enabling the gMDE requires the expression and

consideration of new semantics. Indeed, as mentioned

in section 3.1, the “Platform Independent View” and

“Constraint View” are based on different meta-models.

Thus the gMDE approach uses a Domain Specific

Language (DSL) based on the SOA paradigm, which is

a specialisation of the ARL language.

Figure 3 shows the different meta-models and their

mapping, allowing the description of proper Grid

services and their associated constraints. As a

consequence the system architecture (GEIM) is

respectively considered as a set of services by the

software architect and is then mapped to the

component-connector representation, which is

computable. This paradigm mapping is a key element

in our gMDE approach. The software architect can

focus mainly on his domain requirements and benefits

of the architecture-centric facilities to refine his

system.

Figure 3: The grid domain specific language

As an example, the following is a generic description

of a Grid architecture (voluntary simplified):

gridArchitectureRef is GridSOAArchitecture where {

 structure is {

 serviceName is style serviceTypeRef where {

 structure is {… service internal structure description … }

 connection is { … service connections descriptions … }

 constraint is { … QoS and / or platform constraints mappings … }

 } …

 }

 link is {

 attach serviceName0 to serviceName1 .

 }}

The Grid architecture hereinbefore referred to as

gridArchitectureRef is expressed in terms of services

(e.g. referred to as serviceName), structure,

connections and constraints.

Like the GEIM model, the GECM and GETM models

are expressed using the same semantic. Following is

the meta-model representing a constraint (of type QoS

or Grid middleware).

constraintName is constraintTypeRef {

 on a:architecture actions {

 actionRef elemRef is typeRef {… element description … }

 on b:architecturalElement actions {

 actionRef b .

 actionRef b .

 …}}…

The constraint, referred to as constraintName, is

specified in terms of architectural elements (e.g.

referred to as elemRef) providing its core

functionalities and high-level refinement actions (e.g.

referred to as actionRef) to be applied to one or more

target elements “b”. Using this semantic, a wide variety

of QoS and Grid platforms constraints can be

expressed and concretely used along the gMDE design

process. Given the flexibility of our formal model-

driven approach and relying on the correctness of our

models, the resulting technique is able to tackle every

aspect of software architecture transformations needed

in Grid developments. These models and the enacted

gMDE design process constitute the core of our gMDE

environment (called gMDEnv – not detailed in this

paper).

5 THE MDEGRID EXAMPLE

In order to demonstrate the core gMDE concepts, we

introduce here the mdeGrid system example. For

clarification, this example only treats the application of

one QoS constraint model.

The mdeGrid system aims at providing clients, round-

the-clock access to data stored in the Grid.

Figure 4: The mdeGrid system architecture

To provide such functionality, the mdeGrid system

software architecture has been described as a set of

services with dedicated roles. As detailed in the figure

4, the system architecture features three main services:

- The Portal : in charge of delivering data and

answering to clients’ requests. This service handles

interactions with other Grid services in order to satisfy

the client’s request.

- The DataCacheHandler : this service collects and

caches data queried from the grid through the

genericGridInterface service. It updates this data

automatically by checking it periodically and

downloading if necessary.

- The genericGridInterface : this service represents the

interface to a given grid middleware. (NB: this

interface is considered as generic until the Grid

platform is selected as explained later in the example).

archetype mdeGrid is architecture {

 types is {…}

 ports is {…}

 behaviour is {

 archetype Portal is component {…} .

 archetype genericGridInterface is component{…} .

 archetype DataCacheHandler is component {

 types is { type Data is any . type resultSet is tuple [String, String] }

 ports is {

 archetype ComsP0 is port {

 incoming is {ComsIncP0C0 is connection (resultSet)}

 outgoing is {ComsOutP0C0 is connection (Data)}

 } .

 archetype ComsP1 is port {

 incoming is {ComsIncC0 is connection (Data)}

 outgoing is {ComsOutC0 is connection (resultSet)}

 } }

 behaviour is {

 --<faulttolerance::priority:1,range:1>--

 value resultSet is connection (Data);

 value query := “the query expression…”;

 recursive value readGridDBEntries is abstraction();

 {

 via ComsOutP0C0 send query;

 via ComsIncP0C0 receive res:resultSet;

 updateLocalCachedDB(res);

 readGridDB();

 };

 recursive value clientDataRequest is abstraction();

 {

 via ComsOutP1C0 receive clientRequest:request;

 res := processClientRequest(clientRequest);

 via ComsIncP1C0 send res;

 cacheClientResultSet(res);

 clientDataRequest();

 }; ...

 compose {

 readGridDB() and clientDataRequest()

 }}}{

unifies DataCacheHandler::ComsP1::ComsIncC1

 with Portal::PortComsP0::PortComsOutC0 ... }}

Figure 5: The mdeGrid architecture specification

Using our DSL, the system software architecture is

specified and then transformed into ARL (see figure

5), which constitutes the GEIM model - presented in

section 3.1. (NB: for clarification, the software

architecture description is simplified, i.e. types, ports,

connections and behaviours are not expressed). Once

the system architecture is specified, the software

architect can express non-functional requirements. As

an instance, it is relevant in the mdeGrid architecture

to ensure fault-tolerance over the DataCacheHandler

service to guarantee uninterrupted data access to

clients. To explicitly indicate that this service should

be fault-tolerant, the software architect assigns it a

constraint mapping. The mapping declaration is split

into three parts as detailed below. The first part

specifies its nature, the second its priority with respect

to other constraints and thirdly its range/level. This

constraint mapping is attached to the architectural

element as an annotation inside the GEIM model

following this scheme: “--

<constraintRef::priority:#,range:#>--“ (see the

DataCacheHandler architectural element description

in figure 5 for a detailed example of mapping). Once

analyzed during the gMDE design process, the

corresponding constraint design pattern is selected by

the system (see figure 6). The following definition is a

simplified representation of the Fault-Tolerance design

pattern:

FT is qualityOfServiceProperty {

 on mdeGrid:architecture actions {

 include FTConnector is connector {

 … connector architectural description …}

 on DataCacheHandler :architecturalElement actions{

 replicate DataCacheHandler to DataCacheHandlerClone0;

 unify DataCacheHandler::ComsP0::ComsOutC0 with

 FTConnector:: genericGridInterfaceComsP0::genericGridInterfaceIncC0 .

}}…

Figure 6: The fault-tolerance GECM

Our engineering environment (gMDEnv) then proceeds

to the elaboration of the transformation model needed

to fix the non-functional requirement. This is what is

shown in figure 7. Inside the gMDEnv, a model-driven

approach is enacted for the predictive non-functional

and functional analysis of architectural elements. From

the original GEIM model, the system analyzes the

different constraint mappings and generates a

satisfactory model of atomic transformations to apply

with respect to the corresponding constraint design

pattern.

The analysis conducted by the system is an heuristic

method to determine constraint compatibilities and

solutions among architectural elements and design

patterns. The system tries to map constraints between

architectural elements through inference rules and

selects which transformation is the best suited. This

iterative process leads progressively to the elaboration

of a satisfactory transformation model applicable in

context. This transformation is explained in figure 7

and constitutes an example of the first part of the

gMDE design process. In the resulting architecture (the

GEIM’), the fault-tolerance has been provided by the

introduction of a new connector “FTConnector” – a

representation of a known pattern for fault-tolerance

handling - and the replication of the

DataCacheHandler architectural element as a recovery

service.

Figure 7: A gMDE model transformation

Figure 8 details the obtained new mdeGrid system

description:

behaviour is {

 archetype Portal is component {…} .

 archetype genericGridInterface is component{…} .

 archetype DataCacheHandlerClone0 is component {…} .

 archetype DataCacheHandler is component {

 behaviour is {

 archetype FTConnector is connector { …

 behaviour is {

 recursive value availabilityChecking is abstraction();

 {

 if (serviceDown) value serviceRedirectionURL :=

 DataCacheHandlerClone0;

 availabilityChecking();

 };

 compose { availabilityChecking() }

 } .

 recursive value readGridDBEntries is abstraction();

 {…};

 recursive value clientDataRequest is abstraction();

 {…}; ...

 compose {readGridDB() and clientDataRequest()}... }

Figure 8: The DataCacheHandler new behaviour

Thus, the clients’ requests (through the Portal service)

are re-directed to the clone service in case of a service

failure. The same approach is undertaken when

adapting the specified system architecture to a

particular Grid middleware. The genericGridInterface

architectural element is refined by model

transformation so that the system architecture satisfies

the architectural constraints implied by the design

pattern.

As a conclusion, the model-driven paradigm enables

the introduction of well-known design patterns for

every aspect whether functional or not. For example,

other patterns can be introduced for non-functional

requirements like load balancing, security,

performance, cost policies etc. However, for

simplification matters, we do not discuss these in this

paper although they are treated in our gMDE

engineering environment (gMDEnv).

6 OUTLOOK AND CONCLUSION

In this paper we presented a technique for specifying

Grid applications by modeling and by transforming

these models to automate their adaptation to specific

platforms and QoS constraints. We introduced an

example to illustrate how the approach tackles QoS

specifications in addition to platform requirements.

Our investigation has lead to the elaboration of a wide

range of frequently used Grid platforms and QoS

constraint models. The efficiency of the approach

relies strongly on the correctness of these models;

consequently great care is being taken to ensure this.

As a proof of concept, the engineering framework

being developed (gMDEnv) enacts the combination of

the formal architecture-centric and model-driven

approaches introduced previously. In its current state,

it is already capable of handling most of the presented

models and transformations.

Since this approach is based on the concepts of re-use

and execution platform independence, our engineering

framework scope is not limited to the Grid domain.

The same approach can tackle other developments

based on the SOA vision such as web service-based

applications (i.e. online traders, booking systems,

video on demand systems etc). Thus, the benefits of

using the gMDE are numerous. Formal application

models designed using our framework are persistent

and re-usable. For instance, one can use libraries and

previously stored models to design new applications.

The approach is scalable; one can extend the scope

limitation of the framework by providing the

corresponding new constraint and mapping models.

From the establishment of well-known architectural

concepts, the framework brings a high level of

description to the user while promoting user-

friendliness through a simple semi-automated graphical

user interface (see figure 9).

Figure 9: The gMDEnv graphical user interfaces

Finally, with respect to model transformations, an

interesting area of future research is the development

of a decision system to support users through model-

driven transformations. Indeed, some of the

adaptations required to satisfy platforms and QoS

constraints can lead to critical decisions. We are using

examples such as the one described in section 5 and

the MammoGrid development experience (Amendolia

et al, 2005), to elicit the framework requirements. The

gMDEnv and the presented approach are currently in

use to evaluate potential advantages in the

development process of the MammoGrid application.

There are clearly identified issues in the development

of MammoGrid on which the gMDEnv emphasizes,

such as adapting the system to other Grid platforms,

improving the global application security level or

porting the system to different programming

languages. From these case studies, the preliminary

conclusions are encouraging and show the relevance of

this formal model-driven paradigm applied to the Grid

domain.

This paper is a first investigation of the model-driven

paradigm enactment using established formal

architecture-centric concepts. Besides supporting the

usefulness of the ArchWare ARL language, we are

able to draw a number of conclusions. We learned that

the model-driven approach is a very useful paradigm

when addressing cross-platform developments and

problems of re-use but it must be dependent on a

rigorous basis to be efficient. The formal dimension

brought by ArchWare is one of the key points of our

successful implementation, especially in using a formal

refinement language. Similarly we learned that QoS

attributes are not easy to quantify in models. There is a

true lack of standards that could help significantly

when considering resource comparisons. In the context

of other engineering frameworks and given the

concepts we have now in hand, our approach can

provide relevant benefits to the practice of Grid system

engineering. From our experience, we believe that the

presented approach is an important contribution to the

development of new Grid systems.

ACKNOWLEDGMENTS

The authors wish to thank their Home Institutions and

the European Commission for financial support in the

current research.

REFERENCES

Foster, I. Kesselman, C. Tuecke, S. 2001. The Anatomy of

the Grid – Enabling Scalable Virtual Organisations, In

Int. Journal of Supercomputer Applications,

SOA – Service-Oriented Architectures An Introduction. See

http://www.developer.com/services/article.php/1014371.

Cox, A. 2004. An Exploration of the Application of

Software Reuse Techniques to the Location of Services

in a Distributed Computing Environment, In Thesis

report, University of Dublin.

Kent, S. 2002. Model Driven Engineering, In IFM 2002,

volume 2335 of LNCS. Springer-Verlag.

Kleppe, A. Warmer, J. Bast, W. 2003. MDA Explained: The

Model Driven Architecture™: Practice and Promise.

Addison-Wesley, Paperback, ISBN 032119442X.

Chaudet, C. Megzari, K. Oquendo, F. 2000. A Formal

Architecture-Driven Approach for Designing and

Generating Component-Based Software Process Models.

In Proceedings of the 2000 International Conference on

Information Systems Analysis and Synthesis (ISAS’00),

Track on Process Support for Distributed Teambased

Software Development.

Amendolia, S.R. Estrella, F. Del Frate, C. Galvez, J. Hassan,

W. Hauer, T. Manset, D. McClatchey, R. Odeh, M.

Rogulin, D. Solomonides, T. Warren, R. 2005.

Deployment of a Grid-based Medical Imaging

Application, In Proceedings of the 2005 HealthGrid

Conference.

Land, R. 2002. Improving Quality Attributes of a Complex

System Through Architectural Analysis – A Case Study,

In Proceedings of the International Engineering of

Computer-Based Systems Conference, p 167-174, IEEE

Press.

Medvidovic, N., Oreizy, P. Robbins, J.E. Taylor, R.N. 1996.

Using object-oriented typing to support architectural

design in the C2 Style. In Proceedings of 4th ACM

Symposium on the Foundations of Software Engineering

(SIGSOFT).

EGEE gLite : see http://egee-jra1.web.cern.ch/egee-jra1/
Globus : see http://www.globus.org/

ArchWare. The EU funded ArchWare IST 2001-32360 –

Architecting Evolvable Software - project:

http://www.arch-ware.org.

Oquendo F. Cimpan S. Verjus H. 2002. The ArchWare

ADL: Definition of the Abstract Syntax and Formal

Semantics. Deliverable D1.1b. ARCHWARE European

RTD Project IST-2001-32360.

Milner R. 1999. Communicating and Mobile Systems: the

pi-calculus. ISBN 052164320, Cambridge University

Press.

Kozen D. 1983. Results on the Propositional Mu-Calculus,

Theoretical Computer Science 27:333-354.

Oquendo F. 2004. π-ARL: an Architecture Refinement

Language for Formally Modelling the Stepwise

Refinement of Software Architecture. In ACM SIGSOFT

Software Engineering Notes archive Volume 29, Issue 5,

ACM Press.

Manset, D. Verjus, H. McClatchey, R. Oquendo, F. 2005. A

Model Driven Approach for Grid Services Engineering.

In Proceedings of the 2005 International Conference on

Software Engineering and their Applications.

