
Diapason: an Engineering Approach for Designing, Executing and Evolving
Service-Oriented Architectures

Frédéric Pourraz and Hervé Verjus
University of Savoie - Polytech’Savoie - FRANCE

LISTIC - Language and Software Evolution Group (LS-LSE)
BP 80439, 74944 Annecy-le-Vieux Cedex

{herve.verjus;frederic.pourraz@univ-savoie.fr}

Abstract

Web services are often employed to create wide dis-
tributed evolvable applications from existing components
that constitute a service-based software system. Service-
Oriented Architectures promote loose coupling, services
distribution, dynamicity and agility. As services involved
in a SOA are remote and autonomous services, the SOA de-
signer does not control them and unpredictable behaviour
can occur. Services orchestration is a key issue in order to
fit expectations and reach objectives. Thus, service-oriented
architectures have to be designed and deployed with rigor
in order to be plainly useful and quality aware. Orchestra-
tion languages (BPEL4WS, BPML, etc.) fail in some points
due to the lack of formalization and expressiveness, par-
ticularly when addressing service-based architecture evo-
lution. This paper presents Diapason, an engineering ap-
proach for fully and formally designing service-based ar-
chitectures, deploying them on the Internet, executing them
according to the design and dynamically evolving them tak-
ing into account business changes and modifications.

1 Introduction

Building a software-intensive system from existing soft-
ware blocks of computation is not a novel idea: these blocks
are sometimes called objects, sometimes they are called
components, modules, etc. As the blocks are widely dis-
tributed accross the Internet, designing a software-intensive
system from these blocks is not so easy. In the last ten
years, huge amount of work has been dedicated to design
and deploy software-intensive distributed systems [3]. Such
systems are supported by software blocks that are often
strongly integrated by using technologies that cannot eas-
ily support changes. But now, we speak about time to mar-
ket, enterprise agility and software-intensive system adapt-

ability, i.e. software intensive systems being able to react
to business changes and modifications. Software intensive
systems evolution is becoming a key issue [7, 2] in such
context and SOA propose new perspectives [14]. Recent
works focus on one hand on designing a system from a high
level of abstraction in order to reason about it and to con-
trol it: software architecture field copes with such objectives
[21]; on another hand, providing approaches and technolo-
gies for supporting software-systems evolution is also very
challenging [10, 2].

One of the main interest of Service-Oriented Architec-
tures [6, 14, 20] is basically the underlying ability of such
architectures to inherently being evolvable; because the un-
derlying idea of SOA is that the services (that can be defined
as software functionality packages accessible through a net-
worked infrastructure) are loosely coupled and the SOA
could be adapted to its environment. P2P architectures il-
lustrate such idea when, for example, a service is no more
available and could be replaced dynamically by another (we
will discuss in section 3 about the way of dynamically re-
placing/changing such services either by another service, ei-
ther by the same service being modified). As P2P becomes
more popular, B2B, B2C architectures are appearing and
SOA is becoming a new way of building software-intensive
systems, supporting automated activities that were tradi-
tionnaly only supported by software applications. Then, the
same needs and questions we address to software applica-
tions are now addressed also to SOAs, taking into account
SOA’s characteristics: what about the quality of SOAs ?
How can we ensure that SOA fit requirements, satisfy user’s
needs ? How are SOAs able to evolve according to changes
? How SOAs can be maintained over time ? How can
we ensure that the executed SOA is consistent with the de-
sign ? But SOAs are not traditionnal software applications:
services may be heterogeneous, widely distributed and are
loosely coupled. Loose coupling is achieved through en-
capsulation and communication through message passing;

technology neutrality results from adopting standardized
mechanisms; and rich interface languages permit the ser-
vice to export sufficient information so that eventual clients
can discover and connect to it [14]. SOA paradigm has a
substantial impact on the way software systems are devel-
oped [6]. Thus, SOAs suggest new requirements and new
desires. We investigate in proposing an approach for for-
mally designing, checking, deploying and executing SOAs
(service-based software applications) that deal with such
questions and mentionned issues.
The section 2 of this paper will introduce a SOA-based
scenario that will illustrate evolution requirements and will
present some claims. Section 3 will present our approach,
called Diapason, for designing and deploying Web-service-
based architectures and will illustrate it through the scenario
introduced in section 2. Section 4 will propose some related
works, while section 5 will conclude.

2 An illustrating scenario

Let us consider a virtual print shop that proposes print
functionality to clients. There are several and remote print
servers that may respond to a client’s request. Our purpose
is to hide the print servers distribution to the client by pro-
viding a sole print service. Such service will orchestrate all
print shop services in order to best satisfy the client. That
consists of determining the best policy in order to respond
to the client. Such policy could be defined taking account
some criterias like print server availability, capability, net-
working time, etc. At a first glance, the print servers are able
to provide the printing quantity in their print queues. We
are defining a simple orchestration policy when a client’s
request occurs; such policy consists of selecting the print
server that has the smallest printing quantity. The client’s
printing resquest it sent to the selected print server. The
system implements such policy. Let us now imagine that
the policy is changing (whatever the reasons are) in order to
take into account print servers unaivalability. When a print
server is becoming suspended or unavailable, its associated
print service does not more provide the printing quantity in
the print server queue but provides instead a negative print-
ing quantity (with the -1 as value). The orchestration has
now to deal with a -1 printing quantity’s value. We are now
considering in our scenario that one of the two print servers
is becoming suspended or unavailable; then, when a client’s
request occurs, the choosen print server is the sole that is
currently available.

We only will concentrate on the load-balancing process
(see Figure 1) among print servers in order to define the
best-suited policy. This virtual print shop will be imple-
mented as a SOA. The architecture basically comprises two
print services (that are print servers’s proxies providing op-
erations like getQuantity, sendPrintJob). The scenario is

Figure 1. The virtual print shop architecture

illustrating an SOA that will change over time: the print
servers will be modified by adding a new operation that pro-
vides print server’s status.
As we consider services as black boxes (we only have their
API describing the operations each service provides, i.e. the
WSDL files), we do not control how services are imple-
mented, when and how they can be changed, maintained
over time.

In the following, we propose a formal-based engineer-
ing approach named Diapason, for formalizing, deploying,
executing and evolving services-orchestrations.

3 Diapason: a SOA-based systems formal en-
gineering approach

In [6] the authors present challenges in SOA engineer-
ing domain that encompass requirements, architecture, de-
sign, implementation, testing, deployment and reengineer-
ing. They identified evolution of SOA as important issue;
thus, novel approaches have to be proposed.

Our approach aims at addressing important issues enu-
merated in [14, 6, 20]:

• a services orchestration formal language allowing to
define and reason on evolvable services orchestrations.
Such language has to be dedicated to SOA domain ex-
perts and has to be as simple as possible in order to be
useful for SOA designer;

• services orchestration checking against some prop-
erties expressed by using π-Diapason and logic-
Diapason;

• services orchestration deployment and execution envi-
ronment conform to the services orchestration defini-
tion;

• services orchestration dynamic runtime evolution with
formal built-in checking mechanisms.

3.1 Diapason foundations

Diapason is based on our works in software architecture
domain [17, 16] particularly under the scope of architec-
ture evolution from a high level of abstraction [24, 2]. Soft-
ware architecture encompasses software elements and their
relationships at different level of abstraction (very abstract
level, also called conceptual, and concrete level that is very
close to the code).
The enthusiasm around the development of formal lan-
guages for architecture description comes from the fact
that such formalisms are suitable for automated handling
and models formal reasoning, properties checking [20, 17].
These languages are used to formalize the architecture de-
scription as well as its refinement. The benefits of using
such an approach are manifold. They rank from the incre-
ment of architecture comprehension among the persons in-
volved in a project (due to the use of an unambiguous lan-
guage), to the reuse at the design phase (design elements are
reused) and to the property description and analysis (prop-
erties of the future system can be specified and the architec-
ture analyzed for validation purpose). Once the information
system architecture has been identified and formalized, the
architect may reason on it [20].
Several ADLs were proposed [9] that mainly focused on
architecture design, at a high level of abstraction. In such
context, managing the gap between abstract level and im-
plementation level remains an issue. Our approach does
not distinguish both levels (at the opposite of [20]) but pro-
poses instead to unify design (abstract) and implementa-
tion (concrete) by considering relevant services orchestra-
tion abstractions and by providing behaviour expression and
execution mechanisms. Thus, using Diapason, the SOA de-
signed is also the one that will be executed. Diapason com-
bines strengths of formal and enactable process algebra-
based languages that support dynamic and evolvable soft-
ware architectures [24, 2] with services orchestration pur-
poses, concepts and abstractions [25, 15]. The relevance of
using process algebras in services compositions has been
already claimed and justified [20]. As proposed in [23],
several workflow patterns have been identified in order to
define complete and executable worklows. The Diapason
approach addresses some challenges identified in [6].

We will focus on runtime dynamic maintenance and evo-
lution of SOA in the following that remain an important is-
sue [14].

3.2 Services orchestration using π-
Diapason

Diapason is a π-calculus based approach allowing
formal services based systems modeling. The aim of using
a process algebra (which formally models interactions

between processes [20]) as a fundament is to provide a
mathematical model in order to guarantee the software
conformance with the end-user’s requirements. In other
words, thanks to a mathematical description, a services
based system description can be proven. Different process
algebras have been provided, for example CSP [5], CCS
[11], π-calculus [12], etc.. In our case, we have adopted
the π-calculus due to its main particularity: the process
mobility. This concept allows us to dynamically evolve
SOAs by the way of processes exchanges. In the case of
services orchestration, processes (i.e. orchestrations) is
formally defined in π-calculus terms of behaviours and
channels. A channel aims at connecting two behaviours and
lets them interacting together. The first order π-calculus
has a restricted policy according to the type of informations
which can be transited over a channel. Only simple data
or channel can be transmitted but a behaviour cannot.
Transiting a channel reference over another channel pro-
vides a way, for a process A, which has got a channel
with a process B and another channel with a process C, to
send, for example to B, its channel with C. Finally, both
processes B and C which were not able to communicate
as far for now, can now communicate with a common
channel. This his the first kind of mobility. In our case,
Diapason is based on the high order π-calculus which is
more powerful. In addition to the first kind of mobility, high
order π-calculus let channels to exchange channels as well
as behaviours. This brings a more powerful mobility. In
this way, a behaviour can send (via a channel) a behaviour
to another behaviour. The transmitted behaviour could be
executed by the behaviour’s receiver. Thus, this latter may
be dynamically inherently modified by the behaviour it just
has received.

Diapason provides two different languages and a vir-
tual machine. The first language called π-Diapason lets
us formally describe an SOA. Such SOA will be then
deployed as a Web Service Oriented Architecture (WSOA).
The second language called Logic-Diapason lets us express
some SOA properties. π-Diapason aims at avoiding refine-
ment steps in architecture-centric approaches [13, 24, 2].
This can be done by proposing well defined abstractions for
the services orchestration as well as a runtime environment
that supports the π-Diapason language. π-Diapason is a
powerful language:

• it allows the SOA architect to design and specify SOAs
(focusing on services orchestration);

• it provides Domain Specific Layer (see below) in order
to simplfy SOA design;

• it is formally defined, based on π-calculus;

• it supports dynamic SOA evolution (focusing on ser-

vices orchestration dynamic evolution);

• it is enactable: it is powerful and complete enough,
supporting behaviour expression that a virtual machine
interpretes it.

Thus, there is no gap between design (abstract level) and
implementation (concrete level) as it is the same language
that covers both levels. There is no need for mappings
rules, no need for consistency management (at the opposite
of what is proposed in [20, 4]). The SOA specified will
be the one that will be interpreted. SOA’s execution is
precisely carried out by the Diapason virtual machine;
this latter can be used for SOA simulation and validation
purpose and/or for runtime engine that interpretes services
orchestration expressed in π-Diapason (see section 3.4).

π-Diapason is a layered language which provides three
abstraction levels.

The first layer is the expression of the high order, typed,
asynchronous and polyadic π-calculus [12]. This layer lets
us to express any process (i.e. π-calculus behaviours) in
terms of:

• µ.P: the prefix of a process by an action where µ can
be :

– x(y): a positive prefix, which means the receiv-
ing event of the variable y on the channel x,

– x̄y: a negative prefix, which means the sending
event of the variable y on the channel x,

– τ : a silent prefix, which means an unobservable
action,

• P |Q: the parallelisation of two processes,

• P + Q: the indeterministic choice between two pro-
cesses,

• [x = y]P : the matching expression,

• A(x1, ..., xn)
def
= P: the process definition which allows

to express the recursion.

The second layer is defined on top of the first layer, us-
ing the first layer language. This second abstraction level is
the expression of the previously mentioned workflow pat-
terns: it is itself a formal process pattern definition lan-
guage. The twenty first patterns proposed in [23] are cur-
rently described in this layer; the recent twenty new ones
introduced in [18] will be expressed soon. This second layer
lets us to describe any complex process in an easiest way,
than only using the first layer (π-calculus definition layer
that is less intuitive). Using this second layer language, the

user is now able to define recurrent structures that will serve
as language extensions and will be reused in other process
pattern definitions. We have currently expressed some pat-
terns in order to provide a first library but, as we mentioned,
any other structure can be described using this layer. Let
us take the example of the synchronization pattern, called
synchronize. As we will see in some following examples,
a synchronize pattern allows to merge different parallelized
processes. Expressed using the first layer, the synchronize
pattern description is the following:

pattern(synchronize(connections(_connections)),
iterate(_connections,

iterator(_connection),
behaviour(receive(_connection, _values)))).

The synchronize pattern takes a list of connections (i.e
channels in π-calculus) as parameters. The length of the list
corresponds to the number of parallelized processes. Once
applied, this pattern will use the iterate behaviour (not de-
tailed in this paper) provided by the first layer. The iterate
behaviour takes three parameters: a list (on which one will
iterate), the iteration variable and a behaviour which will be
applied for each iteration. Thanks to the synchronize pat-
tern, the iterate pattern is used as follows: the list passed as
parameter is a list of connections; thus, the iteration vari-
able is a connection (of the list); the behaviour is defined
as a receiving action attempt on the current connection (the
iteration variable value). When the iterate pattern is termi-
nated (i.e. all of the connections involved have received any
value), the orchestration process goes on to the next steps.

The third layer is a domain specific layer. Thanks to
the SOA domain, this layer provides the end user language
for the expression of Web Services Oriented Architectures.
This third abstraction level is defined and expressed by us-
ing the two previous layer; thus, a WSOA expressed in this
third level language is directly expressed as a π-calculus
process. This layer lets us to describe:

• the behaviour of a services orchestration,

• the orchestration inputs and outputs,

• the complex types manipulated and required in such
services orchestration,

• operations of all of the services involved in the orches-
tration.

We are now illustrating the π-Diapason language by ex-
pressing the virtual print shop scenario described in section
2:

• We are creating a new services orchestration called
”VirtualPrintShop” with a sole parameter (as input)
of type ”arrayOfByte” and with a variable named

printJob (all variables are prefixed with an under-
score).

orchestration(
name(’VirtualPrintShop’),
parameters([_printJob], [arrayOfByte]),
...

• Then, we are defining (i) the complex types needed by
all the Web services operations involved in the orches-
tration, none in this scenario, and (ii) the operations
definition. The operation definition includes the oper-
ation’s name, its Web service parent, the URL, input
and output parameters.

...
complex_types([]),
operations([
operation(name(’getQuantity’),
service(’PrintServer_1’),
url(’http://print-server-1/’),
requests([]),
response(name(’quantity’), type(’int’))),

operation(name(’sendPrintJob’),
service(’PrintServer_1’),
url(’http://print-server-1/’),
requests([request(name(’printJob’), type(’

arrayOfByte’))]),
response(_)),

operation(name(’getQuantity’),
service(’PrintServer_2’),
url(’http://print-server-2/’),
requests([]),
response(name(’quantity’), type(’int’))),

operation(name(’sendPrintJob’),
service(’PrintServer_2’),
url(’http://print-server-2/’),
requests([request(name(’printJob’), type(’

arrayOfByte’))]),
response(_))]),

...

• The orchestration behaviour can thirdly be described.
It consists of scheduling the Web services operations
invocations by the way of process patterns (sequence,
parallel, conditional expressions).

...
behaviour(
parallel_split([
sequence(
apply(
invoke(operation(’getQuantity’),

service(’PrintServer_1’),
requests([]),
response(_quantity_1))),

send(connection(’print server 1’), values([]))),
sequence(
apply(
invoke(operation(’getQuantity’),

service(’PrintServer_2’),
requests([]),
response(_quantity_2))),

send(connection(’print server 2’), values([]))),
sequence(
apply(

synchronize(connections([connection(’print
server 1’), connection(’print server 2’)]))
),

Figure 2. The virtual print shop services or-
chestration

sequence(if_then_else(_quantity_1 < _quantity_2,
apply(
invoke(operation(’sendPrintJob’),

service(’PrintServer_1’),
requests([value(_printJob))]),
response(_)),

apply(
invoke(operation(’sendPrintJob’),

service(’PrintServer_2’),
requests([value(_printJob))]),
response(_))),

terminate))])),
...

• Finally, we are adding the returned parameter in terms
of type and variable name; none in this example.

...
return(_)).

3.3 Services orchestration dynamic evolu-
tion: orchestration changes principles
and mechanisms

Thanks to the π-calculus mobility (first order but ex-
tended to behaviour mobility support in the high order), we
may modify the services orchestration dynamically, at run-
time, without to stop this orchestration being executed. By
construction and due to the layered languages we propose,
a services orchestration expressed using the third layer lan-
guage is semantically and formally defined as a π-calculus

process (in term of the first layer language). Evolving a
services orchestration is quite as the same as evolving a π-
calculus process. We offer two different ways of performing
services orchestration dynamic evolution:

• the first one (external evolution) is decided on the ser-
vices orchestration provider in order to maintain it (i.e.
adding, removing, changing functionalities);

• the second one (internal evolution) is fired by the ser-
vices orchestration itself in order to announce a bug or
to request modification(s) when orchestration fails. In
this case, the orchestration π-Diapason definition inte-
grates the evolution code.

...
behaviour(
parallel_split([
// An external evolution may be requested
receive(connection(’EVOLVE’), values([

_evolved_behaviour]))
parallel_split([
sequence(

apply(
invoke(operation(’getQuantity’),

service(’PrintServer_1’),
requests([]),
response(_quantity_1))),

send(connection(’print server 1’), values([])
)),

sequence(
apply(
invoke(operation(’getQuantity’),

service(’PrintServer_2’),
requests([]),
response(_quantity_2))),

send(connection(’print server 2’), values([])
)),

sequence(
apply(
synchronize(connections([connection(’print

server 1’), connection(’print server 2’)
]))),

sequence(if_then_else(_evolved_behaviour != NULL,
// Evolution Required
apply(_evolved_behaviour)
// NO Evolution Required
if_then_else(_quantity_1 < _quantity_2

,
apply(invoke(operation(’

sendPrintJob’),
service(’

PrintServer_1’),
requests([value(

_printJob))]),
response(_)),

apply(invoke(operation(’
sendPrintJob’),

service(’
PrintServer_2’),

requests([value(
_printJob))]),

response(_)))),
terminate))])])),

...

To perform the external evolution, some changes are re-
quired in the orchestration π-Diapason description. These
changes are supported by some specific π-Diapason code
structures inside the behaviour (see the code previously
shown). Thus, an “evolution point” has been added. A

connection called “EVOLVE” in the code, is always avail-
able during the entire services orchestration lifecycle. This
connection allows us to dynamically pass a behaviour to
the orchestration. Once received (the evolved behaviour
variable is becoming not null), this behaviour can be ap-
plied within the orchestration. Such behaviour applica-
tion modifies dynamically the orchestration according to the
behaviour’s π-Diapason definition that integrates changes.
Otherwise, when no behaviour is received, the orchestra-
tion process goes on without modification. Thanks to our
illustrating scenario, the behaviour integrating changes that
correspond to the evolution scenario presented in section 2
is the evolved behaviour variable’s value:

behaviour(
if_then_else((_quantity_1 != -1 , _quantity_2 != -1)

// Case 1
if_then_else(_quantity_1 < _quantity_2,

apply(invoke(operation(’sendPrintJob’),
service(’PrintServer_1’),
requests([value(_printJob))]),
response(_)),

apply(invoke(operation(’sendPrintJob’),
service(’PrintServer_2’),
requests([value(_printJob))]),
response(_))),

if_then_else((_quantity_1 != -1 , _quantity_2 ==
-1)

// Case 2
apply(invoke(operation(’sendPrintJob’),

service(’PrintServer_1’),
requests([value(_printJob))]),
response(_)),

if_then_else((_quantity_1 == -1 , _quantity_2
!= -1)

// Case 3
apply(invoke(operation(’sendPrintJob’),

service(’PrintServer_2’),
requests([value(_printJob))]),
response(_)),

// Case 4
// Evolution request by the process itself
sequence(send(connection(’EVOLVE’), values

([])),
sequence(receive(connection(’EVOLVE’),

values([_evolved_behaviour])),
apply(_evolved_behaviour)))))))

This behaviour definition expressed in π-Diapason takes
into account the status of both print servers by checking
if the return value equals to “-1” (in this case the print
server is in a “suspended” or “unavailable” state). If none of
them is suspended (see the “Case 1” comment in the code
above), the default orchestration policy remains unchanged:
the print job is sent to the print server that is the less loaded.
Otherwise, if one of both print servers are suspended (see
the “Case 2” and “Case 3” comments in the code above),
the selected print server will be the only one available, even
if its loading threshold has been already raised. When all of
the print servers are unavailable (see the “Case 4” comment
in the code above), we are illustrating the internal evolu-
tion strategy. This latter is fired by the orchestration itself
(see the code following the “Case 4” comment): when all
print servers are unavailable, the orchestration definition ex-
pressed in π-Diapason does not contain the policy to apply

(i.e. it is an unpredictable situation). In such situation, the
new policy (containing the changes) has to be on the fly de-
fined in a π-Diapason behaviour and such definition is dy-
namically sent to the connection named “EVOLVE”. Once
the behaviour has been received, it is dynamically applied
at runtime (as already explained); we can imagine to add
a new print server, to send a delay before processing the
request, etc.

3.4 Orchestration checking, deployment
and execution

When services orchestration has been defined using π-
Diapason, the Diapason virtual machine is used in order to
achieve two goals. The first one is the simulation before ex-
ecution (the validation) and the second one is the execution
itself. Simulation provide a way to compute all possible ex-
ecution traces of an orchestration expressed in π-Diapason.
Such traces are then analyzed against defined properties us-
ing the logic-Diapason language (this properties definition
language is not detailed in this paper). Generics properties
can be proved, like deadlock free, liveness properties and
safety properties [20]. In the same way, logic-Diapason lets
us define and check well suited properties to prove that a be-
haviour can or cannot appear during the execution of a spe-
cific orchestration. According to these verifications, it is up
to the architect to validate and to decide whether or not the
π-Diapason expressed orchestration can be deployed or not
yet. In a positive case, the entire orchestration is deployed
as a new Web service in order to easily be invoked and, for
example, to be reused in another orchestration (we can also
define orchestrations compositions - i.e. orchestrations that
compose other orchestrations). Finally, the new web ser-
vice deployed is executed thanks to our Diapason virtual
machine. This web services embeddeds the π-Diapason or-
chestration description and the Diapason virtual machine.
The Diapason virtual machine (π-Diapason interpreter) has
been implemented using XSB [19]. When services orches-
tration has to dynamically evolve, vitrual machine computes
again execution traces taking into account changes; traces
are then analyzed against properties definition. Using prop-
erties analysis, it is up to the architect to validate and to
decide whether or not changes have to be really applied on
the current architecture. Changes may be applied on the fly,
at runtime, without to stop the current services orchestra-
tion execution. The evolution mechanisms are explained in
section 3.3.

4 Related work

Works arround services composition are manifold. They
rank from services choreography, to services orchestration
[15]. Basically, services choreography focuses on messages

between actors (even they are not really identified) involved
in business processes. Services choreography brings an ab-
stract view of process interactions but does not aim at focus-
ing on process execution. Services orchestration addresses
business process through services invocations scheduling
and organisation. Services orchestration aims at defining
executable processes by providing orchestration languages
(amongst the most well known BPEL4WS [1, 25], XLANG
[22], WSFL [8], BPML, etc. [15]) that are executable lan-
guages (by the way of workflow engines). BPEL4WS al-
lows to define abstract business processes and executable
processes. But such languages lack in services orchestra-
tion reasoning, reuse, dynamic maintenance and evolution
[14]: i.e. business processes expressed using these lan-
guages cannot be formally checked, nor they can evolve
dynamically. When services are modified, the orchestra-
tion has to be manually modified accordingly and process
execution cannot be dynamically changed. [20] presents a
framework for the use of process algebra in web services
compositions. The authors distinguish two layers: an ab-
stract layer for which process algebras can be used and a
concrete layer using classical services description, orches-
tration and choreography languages (WSDL, BPEL4WS,
WS-CDL). Services are implemented with programming
languages (Java, C#,...). The abstract layer allows the de-
signer to reson on services compositions before translating
such formal compositions to semi-formal ones. The for-
mal mapping between the two layers deals with the seman-
tic consistency between the layers as the executable layer
is less powerful than the abstract layer. In [4], the authors
present a framework where BPEL specifications of web ser-
vices are translated to an intermediate representation, fol-
lowed by the translation of the intermediate representation
to a verification language. As an intermediate representa-
tion the authors use guarded automata augmented with un-
bounded queues for incoming messages, where the guards
are expressed as XPath expressions. As the target verifica-
tion language the authors use Promela, input language of the
model checker SPIN. As consequence of both approaches
([20, 4]), we cannot guarantee that the implemented ser-
vices orchestration will be totally compliant with the de-
signed one. As the authors promote services orchestration
languages such as BPEL4WS, there is no novel approach
for services orchestration deployment and enactment and
Diapason brings a significant contribution.

5 Conclusion

Diapason is a novel approach for formally define, deploy,
execute and maintain services orchestrations. We are insist-
ing on the evolution mechanisms in this paper. Formal foun-
dations of the π-Diapason language can be found in [16]. π-
Diapason supports on the fly services orchestration changes

by employing high order π-calculus mobility concept: all or
part of an orchestration definition (called a fragment) can be
provided to the current executing orchestration on one of its
channels (in terms of π-calculus). This fragment definition
(a behaviour) is then applied within the evolvable orchestra-
tion. Thus, the services orchestration is internally modified
according to the fragment and the current execution may
be deeply modified. We are now focusing on SOA quality
attributes expressions (using the logic-Diapason language)
and we are investigating changes impacts analysis in order
to improve checking toolkit.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business process execution lan-
guage for web services version 1.1. Specifications, BEA
Systems, International Business Machines Corporation, Mi-
crosoft Corporation, SAP AG, Siebel Systems, May 2003.

[2] S. Cı̂mpan, H. Verjus, and I. Alloui. Dynamic architecture
based evolution of enterprise information systems. In In-
ternational Conference on Enterprise Information Systems
(ICEIS), 2007.

[3] L. Davis, R. Gamble, M. Hepner, and M. Kelkar. Toward
formalizing service integration glue code. In IEEE Interna-
tional Conference on Services Computing, 2005.

[4] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web
services. In A. Press, editor, Proceedings of the 13th In-
ternational World Wide Web Conference (WWW’04), USA,
2004.

[5] C. Hoare. Communicating Sequential Processes. Prentice
Hall International Series in Computer Science, 1985.

[6] K. Kontogiannis, G. A. Lewis, and D. B. Smith. The land-
scape of service-oriented systems: A research perspective.
In Proceedings of International Workshop on Systems De-
velopment in SOA Environments, 2006.

[7] M. Lehman. Laws of software evolution revisited. In Eu-
ropean Workshop on Software Process Technology, pages
108–124, Berlin, 1996. Springer.

[8] F. Leymann. Web services flow language (wsfl 1.0).
[9] Medvidovic and Taylor. A classification and comparison

framework for software architecture description languages.
IEEE Transactions on Software Engineering, 26(1):70–93,
2000.

[10] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri. Challenges in software evo-
lution. In Proceedings of the International Workshop on
Principles of Software Evolution (IWPSE 2005), pages 123–
131. IEEE Computer Society, 2005.

[11] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[12] R. Milner. Communicating and Mobile Systems: The π-
calculus. Cambridge University Press, 1999.

[13] F. Oquendo, I. Alloui, S. Cimpan, and H. Verjus. The arch-
ware adl: Definition of the abstract syntax and formal se-
mantics. Deliverable D1.1b, ArchWare Consortium, Arch-
Ware European RTD Project IST-2001-32360, 2002.

[14] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,
and B. J. Krämer. Service-oriented computing: A re-
search roadmap. In F. Cubera, B. J. Krämer, and
M. P. Papazoglou, editors, Service Oriented Comput-
ing (SOC), number 05462 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.
http://drops.dagstuhl.de/opus/volltexte/2006/524 [date of ci-
tation: 2006-01-01].

[15] C. Peltz. Web services orchestration: A review of emerging
technologies, tools, and standards.

[16] F. Pourraz and H. Verjus. π-diapason: un langage pour la
formalisation des architectures orientées services web. In
1ère Conférence francophone sur les Architectures Logi-
cielles (CAL 2006), pages 119–127, Nantes, September
2006.

[17] F. Pourraz, H. Verjus, and F. Oquendo. An architecture-
centric approach for managing the evolution of eai services-
oriented architecture. In Eighth International Conference on
Enterprise Information Systems (ICEIS 2006), pages 234–
241, Paphos, Cyprus, May 2006.

[18] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst,
and N. Mulyar. Workflow control-flow patterns: A revised
view. Technical report, BPM Center Report BPM-06-22 ,
BPMcenter.org, 2006.

[19] K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B. Cui,
E. Johnson, L. de Castro, R. F. Marques, S. Dawson, and
M. Kifer. The xsb system version 3.0 volume 1: Program-
mer’s manual. Technical report, XSB consortium, 2006.

[20] G. Salaün, L. Bordeaux, M. S. L. Bordeaux, and M. Schaerf.
Describing and reasoning on web services using process
algebra. In ICWS, pages 43–50. IEEE Computer Society,
2004.

[21] M. Shaw and D. Garlan. Characteristics of higher-level lan-
guages for software architecture. Technical Report CMU-
CS-94-210, Carnegie Mellon University, School of Com-
puter Science, December 1994.

[22] S. Thatte. Xlang - web services for business process design.
[23] W. H. M. van der Aalst, A. H. M. ter Hofstede, B. Kie-

puszewski, and A. P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(3), 2003.

[24] H. Verjus, S. Cimpan, I. Alloui, and F. Oquendo. Gestion des
architectures évolutives dans archware. In 1ère Conférence
francophone sur les Architectures Logicielles (CAL 2006),
pages 41–57, Nantes, September 2006.

[25] S. Weerawarana and C. Francisco. Business processes: Un-
derstanding bpel4ws, part 1. IBM developerWorks, 2002.

