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Hervé Verjus and Frédéric Pourraz
University of Savoie - Polytech’Savoie

LISTIC - Language and Software Evolution Group (LS-LSE)
BP 80439, 74944 Annecy-le-Vieux Cedex

{herve.verjus;frederic.pourraz@univ-savoie.fr}

Abstract

Web services are often employed to create wide dis-
tributed evolvable applications from existing components
that constitute a service-based software system. Services-
Oriented Architectures promote loose coupling, services
distribution, dynamicity and agility and introduce new en-
gineering issues. As services involved in a SOA are re-
mote and autonomous services, the SOA designer does not
control them and unpredictable behaviour can occur. Ser-
vices orchestration is a key issue in order to fit expectations
and reach objectives. Thus, Service-Oriented Architectures
have to be designed, analized and deployed with rigor in
order to be plainly useful and quality aware. Orchestra-
tion languages (BPEL4WS, BPML, etc.) fail in some points
due to the lack of formalization and expressiveness, par-
ticularly when addressing service-based architecture main-
tenance and evolution. This paper presents Diapason, a
formal framework that allows us to formally support SOA
design, ckecking, execution and evolution.

1 Introduction

Service-Oriented Architectures (SOA) is a recent
paradigm for building large scale software applications
from distributed services. One of the main interest of SOA
[20, 14, 27] is basically the underlying ability of such archi-
tecture to inherently being evolvable; because the underly-
ing idea of SOA is that the services (that can be defined as
software functionality packages accessible through a net-
worked infrastructure) are loosely coupled and the SOA
could be adapted to its environment. As services are sup-
posed to be autonomous, self-contained, one have no con-
trol nor authority over them. P2P architectures illustrate
such idea when, for example, a service is no more available
and could be replaced dynamically by another. Thus, SOAs

introduce new engineering issues [20, 12, 8, 21] and SOA
evolution is becoming very challenging [20, 21]. In that
perspective, recent works focus on designing evolvable and
quality aware systems from a high level of abstraction in
order to reason about it and to control it: software architec-
ture field copes with such objectives [11, 6, 17, 16]. Thus,
important engineering questions are addressed to SOAs ar-
chitects: what about the quality of SOAs ? How can we
ensure that SOA fit expectations ? How are SOAs able to
be dynamically adapted ? How can we ensure that the exe-
cuted SOA is consistent with the design ?
But SOAs are not traditionnal software applications: ser-
vices may be heterogeneous, widely distributed and are
loosely coupled. Loose coupling is achieved through en-
capsulation and communication through message passing;
technology neutrality results from adopting standardized
mechanisms; and rich interface languages permit the ser-
vice to export sufficient information so that eventual clients
can discover and connect to it [20]. SOA paradigm has a
substantial impact on the way software systems are devel-
oped [14]. Thus, SOAs suggest new requirements and new
desires. We present in this paper our formal framework
called Diapason that lets the user to formally express and
check web services orchestrations that are able to be dy-
namically adapted in a formal and controled manner.
The section 2 of this paper will present works and chal-
lenges related to SOA engineering. Section 3 will intro-
duce a virtual print shop scenario that will illustrate our ap-
proach. Section 4 will present our formal language, called
π-Diapason, for designing evolvable Web-service-based ar-
chitectures. Section 5 will address services orchestration
property definition and analysis; Section 6 will show how
our toolkit supports services orchestration deployment and
execution while section 7 will conclude.



2 Related work and challenges

In [14] the authors present challenges in SOA engineer-
ing domain that encompass requirements, architecture, de-
sign, implementation, testing, deployment and reengineer-
ing. The authors mentionned, amongst other, the following
issues:

• thanks to the architecture: services-oriented frame-
works, platform-independent architectural styles, non-
functional-attribute-driven design;

• thanks to the design: design pattern, platform-
specific models, personalization and adaptation, ser-
vices choreography and orchestration;

• thanks to the implementation: model-driven ap-
proaches, template-based code generation, language
extensions to support service-oriented development,
transformation frameworks;

• thanks to the testing: architecture-level: proof-of-
concept, transaction management, quality of service,
load/stress testing, global-level dynamic: composition,
orchestration, versioning, monitoring, and regression
testing;

• thanks to maintenance and reengineering: evolution
patterns, dependency and impact analysis, infrastruc-
tures for change control and management, tools, tech-
niques and environments to support maintenance activ-
ities, multilanguage system analysis and maintenance,
reengineering processes, tools for the verification and
validation of compliance with constraints, round-trip
engineering.

Related to this, there are many additional opportunities that
our approach will deal with:

• Languages for services orchestration and composition

• Reasoning about services compositions

• Integration by non-experts

• Orchestrations (fragments) reuse

• Services orchestration maintenance and evolution sup-
port

Works arround services composition are manifold. They
range from services choreography, to services orchestration
[22]. Basically, services choreography focuses on messages
between actors (even they are not really identified) involved
in business processes. Services choreography brings an ab-
stract view of process interactions but does not aim at focus-
ing on process execution. Services orchestration addresses

business process through services invocations scheduling
and organisation. Services orchestration aims at defining
executable processes by providing orchestration languages
(amongst the most well known BPEL4WS [3], XLANG
[29], WSFL [15], BPML, etc. [22]) that are executable
languages (by the way of workflow engines). BPEL4WS
allows to define abstract business processes and executable
processes. But such languages lack in services orchestra-
tion reasoning, reuse, dynamic maintenance and evolution
[21, 24]: i.e. business processes expressed using these lan-
guages cannot be formally checked, nor they can evolve dy-
namically. When services are modified, the orchestration
has to be manually modified accordingly and process ex-
ecution cannot be dynamically changed. [27] presents a
framework for the use of process algebra in web services
compositions. The authors distinguish two layers: an ab-
stract layer for which process algebras can be used and a
concrete layer using classical services description, orches-
tration and choreography languages (WSDL, BPEL4WS,
WS-CDL). Services are implemented with programming
languages (Java, C#,...). The abstract layer allows the de-
signer to reson on services compositions before translating
such formal compositions to semi-formal ones. The for-
mal mapping between the two layers deals with the seman-
tic consistency between the layers as the executable layer
is less powerful than the abstract layer. In [10], the authors
present a framework where BPEL specifications of web ser-
vices are translated to an intermediate representation, fol-
lowed by the translation of the intermediate representation
to a verification language. As an intermediate representa-
tion the authors use guarded automata augmented with un-
bounded queues for incoming messages, where the guards
are expressed as XPath expressions. As the target verifica-
tion language the authors use Promela, input language of the
model checker SPIN [1]. Some other approaches are simi-
lar in translating BPEL to a more formal language in order
to perform some verification tasks [9, 28, 4]. Such trans-
lation steps (forward and/or backward) introduce informa-
tion loss as the languages are neither semantically nor pow-
erfull equivalent. Thus, we cannot guarantee that the im-
plemented services orchestration will be totally compliant
with the designed one. As the authors promote services or-
chestration languages such as BPEL4WS, there is no novel
approach for services orchestration deployment and enact-
ment. Thanks to SOA dynamic evolution purpose, the re-
quired translation steps from a semi-formal language to a
formal one has no sense. Our approach is novel and im-
proves the existing proposals in many points we will present
in this paper. We now introduce a virtual print shop sce-
nario that will illustrate our approach; more precisely, this
scenario will be formalized using our services orchestra-
tion formal language π-Diapason and our property defini-
tion language called logic-Diapason.



3 An illustrating scenario

Let us consider a virtual print shop that proposes print
functionalities to clients. There are several and remote print
servers that may respond to a client’s request. Our purpose
is to hide the print servers distribution to the client by pro-
viding a sole print service. Such service will orchestrate all
print shop services in order to best satisfy the client. That
consists in determining the best policy in order to respond
to the client’s request. Such policy could be defined tak-
ing account some criterias like print servers availability, ca-
pability, networking time, etc. At a first glance, the print
servers are able to provide the printing quantity in their print
queues. When a client’s request occurs, we are defining
a simple orchestration policy that consists in selecting the
print server that has the smallest print quantity. The client’s
print resquest it sent to the selected print server. The sys-
tem implements such policy. Let us now imagine that pol-
icy is changing (whatever the reasons are) in order to take
into account the case of a print quantity equals to “-1”. In
this case the print services do not only provide the printing
quantity their are dealing with, but also they are now pro-
viding the print server status: “suspended” if the printing
quantity equals to “-1”. We now consider in our scenarios,
that one on the two print servers’s status is becoming “sus-
pended”, or when a server is no more available (network
failure, etc.), the choosen print server is the sole that is cur-
rently available.

Figure 1. The virtual print shop architecture

We only will concentrate on the load-balancing process
(see Figure 1) among print servers in order to define the
best-suited policy. This virtual print shop will be imple-
mented as a SOA. The architecture basically comprises two
print services (that are print servers’s proxies providing op-
erations like getQuantity, sendPrintJob). The scenario is
illustrating an SOA that will change over time, depending
on the print servers’s availability and status.

Part of the WSDL print services definition is given in the
following:

<wsdl:definitions>
...
<wsdl:message name="getQuantityRequest"/>
<wsdl:message name="getQuantityResponse">

<wsdl:part name="quantity" type="soapenc:int"/>
</wsdl:message>
<wsdl:message name="sendPrintJobRequest">

<wsdl:part name="printJob" type="soapenc:byte[]"/>
</wsdl:message>
<wsdl:message name="sendPrintJobResponse"/>
<wsdl:portType name="PrintServer_PortType">
<wsdl:operation name="getQuantity">
<wsdl:input message="impl:getQuantityRequest"/>
<wsdl:output message="impl:getQuantityResponse"/>

</wsdl:operation>
<wsdl:operation name="sendPrintJob">
<wsdl:input message="impl:sendPrintJobRequest"/>
<wsdl:output message="impl:sendPrintJobResponse

"/>
</wsdl:operation>

</wsdl:portType>
...

</wsdl:definitions>

Such WSDL services definition extract does not contain
< wsdl : service > and < wsdl : binding > tags for sim-
plication and code consiness purpose. Remember that these
services are supposed to be widely distributed and would be
available on the Internet (their URLs could be known). As
we consider services as black boxes (we only have their API
describing the operations each service provides), we do not
control how services are implemented, when and how they
can be changed, maintained over time. Maintainability of a
SOA is a key issue.

4 π-Diapason: a π-calculus-based language
for expressing evolvable Web services or-
chestrations

4.1 π-Diapason formal foundations

Diapason is a formal framework allowing formal ser-
vices based systems modeling, verification, deployment and
execution. The aim of using a process algebra (which
formally models interactions between processes [27]) as
a fundament is to provide a mathematical model in or-
der to guarantee the software conformance with the end-
user’s requirements. Diapason combines strengths of for-
mal and enactable process algebra-based languages that
support dynamic and evolvable software architectures [5, 6]
with services orchestration purposes, concepts and abstrac-
tions [22]. The relevance of using process algebras in ser-
vices compositions has been already claimed and justified
[7, 27]. In other words, thanks to a mathematical descrip-
tion, a services based system description can be proven.
Different process algebras have been provided, for exam-
ple CSP [13], CCS [18], π-calculus [19], etc. In our case,
we have adopted the π-calculus due to its main feature: the



process mobility. This concept allows us to dynamically
evolve application’s topology by the way of processes ex-
changes. In the case of services orchestration, processes
(i.e. orchestrations) is formally defined in π-calculus terms
of behaviours and channels. A channel aims at connecting
two behaviours and lets them interacting together. The first
order π-calculus has a restricted policy according to the type
of informations which can be transited over a channel. Only
simple data or channel can be transmitted but in never way
a behaviour. Transiting a channel reference over another
channel provides a way, for a process A, which has got a
channel with a process B and another channel with a process
C, to send, for example to B, its channel with C. Finally, the
processes B and C which are not able to communicate as
far for now, can now communicate with a common channel.
This his the first kind of mobility. In our case, π-Diapason
is based on the high order π-calculus which is more pow-
erful. In addition to the first kind of mobility, hight order
π-calculus let channels to exchange channels as well as be-
haviours. This brings a more powerful mobility. In this
way, a behaviour can send (via a channel) a behaviour to
another behaviour. The transmitted behaviour could be ex-
ecuted by the behaviour’s receiver. Thus, this latter may be
dynamically inherently modified by the behaviour it just has
received.
π-Diapason aims at proposing well defined formal abstrac-
tions for expressing services orchestration that can be then
executed (because π-Diapason is an executable formal lan-
guage); π-Diapason:

• allows the SOA architect to design and specify SOAs
(focusing on services orchestration);

• provides Domain Specific Layer (see below) in order
to simplify SOA design;

• is formally defined, based on π-calculus;

• supports dynamic SOA evolution (focusing on services
orchestration dynamic evolution);

• it is executable: it is powerful and expressive enough
that a virtual machine can interprete it.

Thus, there is no gap between design (abstract level) and
implementation (concrete level) as it is the same language
that covers both levels. There is no mappings rules, no need
to consistency management. The SOA specified will be
the one that will be interpreted. SOA’s execution is pre-
cisely carried out by the π-Diapason virtual machine; this
latter can be used for SOA simulation and validation pur-
pose and/or for runtime engine that interpretes services or-
chestration expressed in π-Diapason (see section 5).

4.2 π-calculus basis for the π-Diapason
language

Thanks to the π-calculus [18], some operators are re-
quired (we defined naming conventions: upper case letters
stand for process while lower case letters stand for vari-
ables):

• µ.P: the prefix of a process by an action where µ can
be :

– x(y): a positive prefix, which means the receiv-
ing event of the variable y on the channel x,

– x̄y: a negative prefix, which means the sending
event of the variable y on the channel x,

– τ : a silent prefix, which means an unobservable
action,

• P |Q: the parallelisation of two processes,

• P + Q: the indeterministic choice between two pro-
cesses,

• [x = y]P : the matching expression,

• A(x1, ..., xn)
def
= P: the process definition which allows

to express the recursion.

Starting for the 0 process (i.e. the inactive process), the
definition of a P process can be expressed as follows:

P
def
= 0 — x(y).P — x̄y.P — τ .P — P1—P2 — P1+P2 —

[x = y]P — A (x1, ..., xn)

π-Diapason has been designed as a layered language
which provides three abstraction levels.

4.3 The first layer

The π-Diapason first layer is the expression of the high
order, typed, asynchronous and polyadic π-calculus [19]:

• polyadic for sending simultaneously several values on
a same channel (i.e. in order to invoke a service with
some parameters),

• asynchonous; thus a process that sends a value on a
channel is not blocked event if the receiver is not ready
to proceed the receiving action,

• typed for allowing typed value declaration. Thus, type
checking is then possible,

• high order for allowing to transmit connections and
processes on channels that stands for mobility (we will
employ π-calculus mobility as a conceptual means for
evolving services orchestration).



The π-Diapason virtual machine supports this first layer.
The π-Diapason first layer non-symbolic syntax is a XSB
[26] Prolog-based syntax. Given the naming conventions:
a process’s name begins with a lower case letter while
variable’s name begins either with an underscore character
“ ”, either with a upper case letter, this first layer syntax
definition is as follows:

0 ≡ terminate
P ≡ apply(p)
P.Q ≡ sequence(apply(p), apply(q))
x(y) ≡ receive(X, Y)
x̄y ≡ send(X, Y)
τ ≡ unobservable
P — Q ≡ parallel split([apply(p), apply(q)])
P + Q ≡ deferedChoice([apply(p), apply(q)])
[x = y] P ≡ if then(C, apply(p))
or if then else(C, apply(p), apply(q))

Process definition and application: a process can be de-
fined and applied in two different ways.
The first one consists in creating an anonymous process that
is applied only once (and cannot be reused). Such process is
called as behaviour and is declared and applied as follows:

apply(behaviour(...)).

The second way consists in first defining a named process
that can be possibly applied several times in a given ser-
vices orchestration. Such process is called as process and
its definition and application are as follows:

process(process_name(_parameter1, _parameter2, ...),
behaviour(...))

...
apply(process_name(_value1, _value2, ...))

Inter-process communication channels can be defined
as connections. A connection is named. We may send a
value on a connection connection name.

send(connection(’connection_name’), _value)

Values and variables. Values are literals (integers, floats,
booleans, strings). Variables are named (with a first char-
acter that is either the underscore character, either a upper
case letter). A variable’s value can be either a literal, either
a connection or a process.

Collections. A collection is either a list, either an array. A
list is sorted collection that contains values that may of dif-
ferent types while an array only contains same type values.

list([_value1, _value2, ...])
array([_value1,_value2, ...])

We introduced an iterate operator for iterating over a col-
lection. Iteration consists in executing a behaviour at each
collection’s element.

iterate(_collection, _iterator, _behaviour)

New types definition can be added in the language. We
do not detail this feature in this paper.

4.4 The second layer

The π-Diapason second layer is defined on top of the
first layer, using the first layer language. This second ab-
straction level is the expression of the previously mentioned
workflow patterns: it is itself a formal process pattern defi-
nition language. The twenty first patterns proposed in [30]
are currently described in this layer; the recent twenty new
ones introduced in [25] will be expressed soon. This second
layer:

• lets us to describe any complex process in an easiest
way and at a higher level of abstraction, than only us-
ing the first layer (π-calculus definition layer that is
less intuitive);

• allows the user to define recurrent structures that will
serve as language extensions and will be reused in
other process pattern definitions. We have currently
express some patterns in order to provide a first library
but, as we mentioned, any other structure can be de-
scribed using this layer;

• contains the formal definition of the services orches-
tration paterns. Thus, future verifications could be per-
formed;

• is generic enough to be domain independant and can be
served as basis for domain-specific languages defined
upon it.

Let us take the example of the synchronization pattern,
called synchronize. This pattern allows to merge different
parallelized processes. Expressed using the first layer, its
description is the following:

pattern(synchronize(connections(_connections)),
iterate( _connections,

iterator(_connection),
behaviour(receive(_connection, _values)))).

The synchronize pattern takes a list of connections (i.e
channels in π-calculus) as parameters. The length of the list
corresponds to the number of paralleled processes. Once
applied, this pattern will use the iterate behaviour provided
by the first layer. The iterate behaviour takes three parame-
ters: a list (on which one will iterate), the iteration variable
and a behaviour which will be applied for each iteration.



Thanks to the synchronize pattern, the iterate pattern is
used as follows: the list passed as parameter is a list of
connections; thus, the iteration variable is a connection
(of the list); the behaviour is defined as a receiving action
attempt on the current connection (the iteration variable
value). When the iterate pattern is terminated (i.e. all of
the connections involved have received any value), the
orchestration process goes on to the next steps.
Thus, this layer contributes significantly to the services
orchestration by using formal orchestration patterns.
π-Diapason second layer constitutes a novel and extensible
services orchestration formal language and is a serious
alternative to well known but less expressive and less
extensible orchestration languages (BPEL4WS, WSFL,
etc.).

4.5 The third layer: a formal language for
expressing evolvable web services or-
chestrations

This layer is a domain specific layer. In our case it pro-
vides the end user language for the expression of web ser-
vices orchestration. This third abstraction level is defined
and is expressed by using the two previous layers (i.e. in
terms of π-calculus); thus, a Web Service Oriented Archi-
tecture expressed in this third level language is a π-calculus
process (without translation). Our approach is clearly dif-
ferent from translation-based approaches, like for example,
the translation of a BPEL orchestration to a formal language
where it is up to the user to give an interpretation of what
a BPEL orchestration is, by defining its own translation
mechanism. As consequence a same BPEL orchestration
can have several interpretations; thus, properties checking
and reasoning on services orchestration are less interesting.
Our approach does not deal with translation but promotes
a semantical π-calculus expression of each services orches-
tration concepts. In such a way, an orchestration described
in π-Diapason is formally defined and will always have the
same interpretation. Moreover, if the π-Diapason orches-
tration satisfies properties, our approach guarantees that the
orchestration will still satisfy them at runtime because the
verifications are directly be done on the π-calculus inter-
pretation. The third layer provides a high level language
that allows the designer to formalize services orchestration
without to be in touch with π-calculus. This layer lets us
to describe (a) the behaviour of a services orchestration, (b)
the orchestration inputs and outputs, (c) the complex types
manipulated and required in such services orchestration, (d)
operations of all of the services involved in the orchestra-
tion.

In order to define web services orchestrations we have to
express web services operations involved in the orchestra-

tion. We do not care how services are implemented but we
just need operations provided. Thus web service operations
are formalized using WSDL files that contain all required
information (i.e. operation’s name, operation’s parent web
service, operation’s invocation URL, operation’s parame-
ters, optionally, operation’s return value).

Operation concept is defined in terms of types of the π-
Diapason’s second layer.

type(operation, list([operation_name, service, url,
requests, response])).

...
type(operation_name, string).
type(service, string).
type(url, string).
...

We do not explain deeper such operation complete defi-
nition (request and response are not detailed in this paper).

Thanks to the communication protocol (SOAP) em-
ployed in WSOA, complex types have to be formalized.
Each complex type formalization includes the complex type
name, its namespace and its constituents (other types). This
formalization is not presented here.

Invoking operation is formalized as a π-calculus process
called invoke. Such invocation process takes some param-
eters: the operation name, a collection containing the oper-
ation arguments and a return value. In term of π-Diapason
first layer concepts, such definition consists in sending a
message on a connection named request and then, waiting
for a message on a connection named response. The defini-
tion of the invocation process is given as follow:

process(invoke(operation(_operation), requests_values
(_requests), response_value(_response)),

sequence(send(connection(’request’), operation_value(
list([operation(_operation), requests_values(
_requests)]))),

receive(connection(’response’), response_value(
_response)))).

Web services orchestration is then defined as a π-
Diapason second layer process. Such process takes four
parameters: the name of the orchestration (remember that
a named process can be reused as necessary), the orches-
tration parameters (i.e. a collection), a return value and a
behaviour that orchestrates some invocation processes. The
orchestration process behaviour consists in applying the be-
haviour passed as parameter. Such definition implies new
types definition (i.e. parameters, return, etc.) that are not
introduced in the paper.

type(orchestration_name, string).
process(orchestration(orchestration_name(_name),

parameters(_parameters), return(_return),
behaviour(_behaviour)),

apply(behaviour(_behaviour))).



4.6 Services orchestration dynamic evolu-
tion

Thanks to the π-calculus mobility (first order but ex-
tended to behaviour mobility support in the high order), we
may modify the services orchestration dynamically, at run-
time, without to stop this orchestration being executed. By
construction and due to the layered languages we propose,
a services orchestration expressed using the third layer lan-
guage is semantically and formally defined as a π-calculus
process (in term of the first layer language). Evolving a
services orchestration is quite as the same as evolving a π-
calculus process. We offer two different ways of performing
services orchestration dynamic evolution:

• the first one (external evolution) is decided on the ser-
vices orchestration provider in order to maintain it (i.e.
adding, removing, changing functionalities);

• the second one (internal evolution) is fired by the ser-
vices orchestration itself in order to announce a bug or
to request modification(s) when orchestration fails. In
this case, the orchestration π-Diapason definition inte-
grates the evolution code.

Figure 2. The virtual print shop services or-
chestration behaviour

...
behaviour(
parallel_split([
// An external evolution may be requested
receive(connection(’EVOLVE’), values([

_evolved_behaviour]))
parallel_split([
sequence(
apply(
invoke( operation(’getQuantity’),

service(’PrintServer_1’),
requests([]),
response(_quantity_1))),

send(connection(’print server 1’), values([])
)),

sequence(
apply(

invoke( operation(’getQuantity’),
service(’PrintServer_2’),
requests([]),
response(_quantity_2))),

send(connection(’print server 2’), values([])
)),

sequence(
apply(

synchronize(connections([connection(’print
server 1’), connection(’print server 2’)
]))),

sequence(if_then_else(_evolved_behaviour != NULL,
// Evolution Required
apply(_evolved_behaviour)
// NO Evolution Required
if_then_else(_quantity_1 < _quantity_2

,
apply(invoke( operation(’

sendPrintJob’),
service(’

PrintServer_1’),
requests([value(

_printJob))]),
response(_)),

apply(invoke( operation(’
sendPrintJob’),

service(’
PrintServer_2’),

requests([value(
_printJob))]),

response(_)))),
terminate))])])),

...

To perform the external evolution, some changes are re-
quired in the orchestration π-Diapason description. These
changes are supported by some specific π-Diapason code
structures inside the behaviour (see the code previously
shown). Thus, an “evolution point” has been added. A
connection called “EVOLVE” in the code, is always avail-
able during the entire services orchestration lifecycle. This
connection allows us to dynamically pass a behaviour to
the orchestration. Once received (the evolved behaviour
variable is becoming not null), this behaviour can be ap-
plied within the orchestration. Such behaviour applica-
tion modifies dynamically the orchestration according to the
behaviour’s π-Diapason definition that integrates changes.
Otherwise, when no behaviour is received, the orchestra-
tion process goes on without modification. Thanks to our
illustrating scenario, the behaviour integrating changes that
correspond to the evolution scenario presented in section 3
is the evolved behaviour variable’s value:

behaviour(
if_then_else( (_quantity_1 != -1 , _quantity_2 != -1)

// Case 1
if_then_else(_quantity_1 < _quantity_2,

apply(invoke( operation(’sendPrintJob’),
service(’PrintServer_1’),
requests([value(_printJob))]),
response(_)),

apply(invoke( operation(’sendPrintJob’),
service(’PrintServer_2’),
requests([value(_printJob))]),
response(_))),

if_then_else( (_quantity_1 != -1 , _quantity_2 ==
-1)



// Case 2
apply(invoke( operation(’sendPrintJob’),

service(’PrintServer_1’),
requests([value(_printJob))]),
response(_)),

if_then_else( (_quantity_1 == -1 , _quantity_2
!= -1)

// Case 3
apply(invoke( operation(’sendPrintJob’),

service(’PrintServer_2’),
requests([value(_printJob))]),
response(_)),

// Case 4
// Evolution request by the process itself
sequence( send(connection(’EVOLVE’), values

([])),
sequence( receive(connection(’EVOLVE’),

values([_evolved_behaviour])),
apply(_evolved_behaviour)))))))

Figure 3. The virtual print shop services or-
chestration modified behaviour

This behaviour definition expressed in π-Diapason takes
into account the status of both print servers by checking
if the return value equals to “-1” (in this case the print
server is in a “suspended” or “unavailable” state). If none of
them is suspended (see the “Case 1” comment in the code
above), the default orchestration policy remains unchanged:
the print job is sent to the print server that is the less loaded.
Otherwise, if one of both print servers are suspended (see
the “Case 2” and “Case 3” comments in the code above),
the selected print server will be the only one available, even
if its loading threshold has been already raised. When all of
the print servers are unavailable (see the “Case 4” comment
in the code above), we are illustrating the internal evolu-
tion strategy. This latter is fired by the orchestration itself
(see the code following the “Case 4” comment): when all
print servers are unavailable, the orchestration definition ex-
pressed in π-Diapason does not contain the policy to apply
(i.e. it is an unpredictable situation). In such situation, the
new policy (containing the changes) has to be on the fly de-

fined in a π-Diapason behaviour and such definition is dy-
namically sent to the connection named “EVOLVE”. Once
the behaviour has been received, it is dynamically applied
at runtime (as already explained); we can imagine to add a
new print server, to send a duration before processing the
request, etc. (it is up to the services orchestration designer).

5 logic-Diapason: a services orchestration
properties definition language

5.1 Analysis principles

When services-orchestration has been defined using π-
Diapason, the π-Diapason virtual machine is used in order
to achieve two goals. The first one is the simulation be-
fore execution (the validation) and the second one is the
execution itself. Simulation provide a way to compute all
possible execution traces of an orchestration expressed in
π-Diapason.

This computation is made by extracting all the possi-
ble conditionnal sequences. By conditionnal sequences, we
mean all the values that can be assigned to the different con-
ditionnal structures, like an if then else for example, that
might occur in a given orchestration (thanks to sequences
and paralellizations). Once this computation is terminated,
the π-Diapason virtual machine simulates the differents ex-
ecution paths and extract a list of states (that what we call
a trace) for each paths. Thanks to the virtual print shop ex-
ample (before evolution), this computation leads to extract
two traces. In this example, we only consider a single con-
ditionnal structure with two possible ways (true or false).
When the condition is evaluated as true, the first trace out-
put results are the following :

parallel_split
PrintServer_1.getQuantity / PrintServer_2.getQuantity
synchronize
PrintServer_1.sendPrintJob
terminate

When the condition is evaluated as false, the second trace
output results are as follows:

parallel_split
PrintServer_1.getQuantity / PrintServer_2.getQuantity
synchronize
PrintServer_2.sendPrintJob
terminate

5.2 Property definition

When obtained, traces are then analyzed against defined
properties expressed using the logic-Diapason language.
Generics properties can be proved, like deadlock free, live-
ness properties and safety properties [2, 27]. In the same
way, the logic-Diapason language lets us define and check



well suited properties to prove that a behaviour can or can-
not occur during the execution of a specific services orches-
tration. The logic-Diapason language proposes different op-
erators. The two first one allow to define the scope of a
property:
forall(_property) // the property must be true for

all possible execution traces
exists(_property) // the property must be true for

at least one execution trace

Some other operators allow to define boolean structures
:
and(_property_1, _property_2) // both properties

must be verified
xor(_property_1, _property_2) // at least one

property must be verified
not(_property) // the musn’t be

verified

Finaly, four operators are provided in order to reason
against the scheduling of the states inside a trace:
state(_state, _operator, _number_of_occurence)

// tests the occurency number of a state
unordered_states(_states)

// tests if a set of states exists
whatever the order is

ordered_states(_states)
// tests if a ordered list of states

exists in the same order than
listed (other states can be
interleaved)

strictly_ordered_states(_states, _operator,
_number_of_occurence)

// tests if a ordered list of state
exists, and its occurency number,
in the strictly same order than
listed (no other state can be
interleaved)

By using these operators, we can now define a property
in order to check whether or not the virtual print shop ser-
vices orchestration is valid against different constraints. For
example, we might ensure that a sole print service is in-
voked at a time; this leads to define a property that consists
in invoking one and only one print job operation. Moreover,
we can constrain a pre-condition to this print action, i.e. by
invoking the print quantity before requesting a print. These
constraints are described in the logic-Diapason language as
follows:
property(
forall(
xor(
and(

state(’PrintServer_1.sendPrintJob’, ’=’, 1),
and(
state(’PrintServer_2.sendPrintJob’, ’=’, 0),
ordered_states([’PrintServer_1.getQuantity’,

’PrintServer_1.sendPrintJob’]))),
and(

state(’PrintServer_2.sendPrintJob’, ’=’, 1),
and(
state(’PrintServer_1.sendPrintJob’, ’=’, 0),
ordered_states([’PrintServer_2.getQuantity’,

’PrintServer_2.sendPrintJob’])))))).

For all possible executions (see the previous property
definition), either we have one and only one occurence of

the PrintServer 1 service’s sendPrintJob operation, and no
occurence of the PrintServer 2 service’s sendPrintJob op-
eration, either we have the opposite (one and only one oc-
curence of the PrintServer 2 service’s sendPrintJob opera-
tion and no occurence of the PrintServer 1 service’s send-
PrintJob operation). In both cases, the property definition
implies that a getQuantity operation has to be invoked be-
fore invoking a sendPrintJob operation on the same service.

6 Services orchestration deployment and ex-
ecution

According to verifications the user made, it is up to the
architect to validate and to decide whether or not the π-
Diapason expressed orchestration can be deployed or not
yet. In a positive case, the entire orchestration is deployed
as a new Web service in order to easily be invoked and,
for example, to be reused in another orchestration (i.e. or-
chestration compositions). Finally, the new Web service
deployed is executed thanks to our π-Diapason virtual ma-
chine. This Web service embeddeds the π-Diapason orches-
tration description and the π-Diapason virtual machine. The
π-Diapason virtual machine (π-Diapason interpreter) has
been implemented using XSB [26]. When services orches-
tration has to dynamically evolve, vitrual machine computes
again execution traces taking into account changes; traces
are then analyzed against properties definition. Using prop-
erties analysis, it is up to the architect to validate and to
decide whether or not changes have to be really applied on
the current architecture. Changes may be applied on the fly,
at runtime, without to stop the current services orchestration
execution.

7 Conclusion

We have introduced our approach for formally define,
check, deploy, execute and evolve Web services orchestra-
tions; π-Diapason and logic-Diapason are complementary
languages for that purpose. Diapason is our engineering
envdironment that supports and enacts the Diapason frame-
work and accompanied tools (graphical modeller for ser-
vices orchestration modelling, analyser for checking traces
against properties, graphical animator for simulating ser-
vices orchestration execution). In addition, π-Diapason
supports on the fly services orchestration evolution by em-
ploying high order π-calculus mobility concept: all or part
of an orchestration definition (called a fragment) can be pro-
vided to the current executing orchestration on one of its
channels (in terms of π-calculus). This fragment definition
(a behaviour) is then applied within the evolvable orchestra-
tion. Thus, the services orchestration is internally modified
according to the fragment and the current execution may



be deeply modified. We are now focusing on SOA quality
attributes expressions (using the logic-Diapason language)
and we are investigating changes impacts analysis. A more
sophisticated scenario has been presented in [23] that has
also be enacted using Diapason.
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