
To offer a comprehensive response to
the above concerns, researchers in the
VTT Software Architectures and Plat-
forms department are developing a Van-
tagePoint tool, which will make the
contextual semantic information related
to service descriptions easier to under-
stand, and its use by an application
developer foolproof. The tool allows
users to view ontology instances associ-
ated with complex contextual informa-
tion in a more illustrative and compre-
hensible way. It also allows users to
semantically model and interactively
simulate contextual environments of
interest. These may be either physical
real-world (ie devices, services, func-
tional capabilities of service, contexts)
or conceptual (business boundaries,
networking or security domains). It
supports the conceptual design of appli-

cations (eg verifying a service composi-
tion logic) or middleware-level services
(eg semantic service discovery) against
one or more contextual scenarios.
Moreover, we believe that the research
presented is a step toward the better
understanding and wider acceptance of
ontology-based semantic technology
also for non-Web services.

VantagePoint is written in Java; it uses
the Jena interface to manage OWL
ontologies, and Java 2D graphics to
visualize them. VantagePoint can have
several visualization libraries contain-
ing domain-specific icons. These
libraries are stored as simple text files
that contain URLs of the icon files pro-
viding isometric visualization from dif-
ferent perspectives (PNG images), and
a URL of a semantic class description in

one of VantagePoint’s semantic
libraries. A browser tool is provided for
examining the visualization libraries.
While the current libraries relate to
intelligent home applications, future
elements will describe other intelligent
environments such as car, plane, or
mobile outdoor domain.

Links:
http://www.hitech-projects.com/eupro-
jects/amigo/
http://www.vtt.fi/proj/vantagepoint/

Please contact:
Julia Kantorovitch, Jarmo Kalaoja
VTT, Finland
Tel: +358 20 722 2334
E-mail: Julia.Kantorovitch@vtt.fi,
Jarmo.Kalaoja@vtt.fi

ERCIM NEWS 70 July 2007 37

Diapason: An Engineering Environment
for Designing, Implementing
and Evolving Service Orchestrations
by Frédéric Pourraz and Hervé Verjus

The aim of Diapason is to allow designers of service-oriented architectures (SOAs) to precisely
orchestrate services using an orchestration language based on pi calculus. Once defined, an
orchestration can be verified against properties and constraints, can be deployed as a new service
and can evolve dynamically and on the fly.

SOAs are service-based applications for
which classical software engineering
approaches fail. This is due to the het-
erogeneous, autonomous, widely dis-
tributed and loosely coupled nature of
the services. In other words, when build-
ing an SOA, the designer does not con-
trol the service's implementations. As
SOAs are increasingly used to support
widely distributed software-intensive
systems in a plethora of domains (busi-
ness, manufacturing, health, Grid-based
applications, military etc), the design,
implementation and evolution of SOAs
is a challenging problem.

Diapason Approach
We introduce a new environment called
Diapason. Diapason is an SOA-based
systems-engineering environment that
supports service orchestration, along
with the analysis, deployment, execu-
tion and evolution of that orchestration.
Diapason provides a layered formal lan-
guage called pi-Diapason, which relates

to SOA structure/topology with most of
the service orchestration patterns
already proposed (www.workflowpat-
terns.com). It is also extensible (ie archi-
tects can define their own extensions
and concepts) and executable.

It also provides:
• a properties definition language called

logic-Diapason
• an analyser (a properties checking

tool)
• an animator (a graphical simulation

tool)
• deployment mechanisms
• a virtual machine (a runtime engine).

Basically, services provide operations
that can be remotely invoked. The man-
ner in which the services (and opera-
tions) are implemented is unimportant,
since services are considered to be black
boxes that can be composed (orches-
trated). When orchestrating Web serv-
ices, WSDL files are referenced in order

to obtain the signatures of the operations
and to then invoke these operations at
runtime.

Once defined, a service orchestration can
be deployed as a new service that can be
further reused in other orchestrations
and/or can be modified according to new
requirements. When an orchestration is
reused it is considered to be a standalone
service, providing its own operation(s).
Hence, the orchestration can be com-
posed with other services and be
involved in other orchestration(s). A
service orchestration is executed by way
of a virtual machine that interprets pi-
Diapason language. In this way, pi-Dia-
pason can be used as a formal and exe-
cutable SOA specifications language.

Service composition is a key issue in
Diapason. Pi-Diapason is formally
based on polyadic high-order Milner's
pi-calculus, which is a form of process
algebra. Service orchestration descrip-

tions use orchestration patterns that are
formally defined in terms of pi-calculus
processes. Basically, a service orchestra-
tion is a complex pi-calculus process
that composes other pi-calculus
processes. In order to simplify the
description of an orchestration, Diapa-
son provides a lightweight and intuitive
graphical editor.

Thanks to the pi-calculus mobility
(introduced in the first-order pi-calculus
but extended to behaviour mobility sup-
port in the high-order pi-calculus), we
can dynamically modify the service
orchestration at runtime without stop-
ping the execution of this orchestration.
Evolving a service orchestration at run-
time is also very challenging. Evolving
a Diapason service orchestration is the
same as evolving a pi-calculus process.

Pi-Diapason provides pi-calculus-spe-
cific constructs that are responsible for
evolution: using these constructs, the
SOA architect can interact with the pi-
Diapason virtual machine in order to
modify the service orchestration pi-Dia-
pason code at runtime. Modifications
are transmitted to the virtual machine
and are then dynamically applied with-
out interrupting the executing orchestra-
tion (the virtual machine supports serv-
ices orchestration state consistency
management). The service orchestration
behaviour is changed on the fly by way
of pi-calculus messages that contain the
required changes.

SOAs defined using pi-Diapason can be
checked against properties (eg dead-
lock-free, vivacity, liveness, structural
and behavioural properties). Properties

ERCIM NEWS 70 July 200738

Special Theme: Service-Oriented Computing

Figure 1: Orche-
stration description
(Diapason graphi-
cal editor).

Figure 2: Orchestration evolution.

Figure 3: Orchestration reuse.

are defined using logic-Diapason, a
logic-based properties definition lan-
guage. SOA properties are then verified
according to two steps: the first is per-
formed by the pi-Diapason virtual
machine that allows the extraction of all
possible execution traces, while the sec-
ond is done by the analyser, which
allows properties expressed using logic-
Diapason to be checked over all the pre-
viously extracted traces. In addition to
this formal verification, the animator

lets us simulate one or more of the
SOA’s execution traces in a graphical
manner. This is a more intuitive (though
informal) way of checking the SOA's
structure and behaviour.

Diapason Engineering Environment
A Diapason service orchestration is
deployed as a service; this embeds the
service-orchestration pi-Diapason
description, a pi-Diapason virtual
machine, in order to interpret the

orchestration and a context-aware
deployment platform (according to the
application server on which the service
is deployed, ie Tomcat Axis or similar).

Please contact:
Frédéric Pourraz and Hervé Verjus
University of Savoie - Polytech'Savoie,
LISTIC, France
E-mail: frederic.pourraz@univ-savoie.fr,
herve.verjus@univ-savoie.fr

ERCIM NEWS 70 July 2007 39

SUPER – Raising Business Process
Management back to the Business Level
by Christian Brelage, Ingo Weber and Alina Dima

The SUPER project (Semantics Utilized for Process Management within and between Enterprises)
attempts to make a quantum leap in business process management by improving modelling and
management of business processes. This leap will be achieved by integrating and utilizing semantic
technologies for business process management. It answers the two most urgent issues emerging
from BPM: shifting control of processes from IT professionals to business experts and carrying up
business process management to a new complexity level.

SUPER is a European Union-funded
Integrated Project (IP) with a duration of
36 months and under the coordination of
SAP. It started in April 2006 and unites
19 partners and approximately 60
researchers. The project consortium is a
balanced blend of technological industry
partners, service providers and academic
research teams from all over Europe.

The motivation behind SUPER arises
from the challenges the increased fre-
quency with which business models and
the contexts of enterprises change in

today’s world. The causes for these
changes are mostly new internal or
external business requirements – such as
closer integration with suppliers and
customers, implementation of new stan-
dards, deployment of new application
components – which may originate in
emerging business opportunities or new
regulations from legal bodies. These
challenges induce two requirements: to
provide fast and cheap access to the
space of processes in an organization,
and to enable swift adaptation of opera-
tional business processes.

The major objective of SUPER is to
raise Business Process Management
(BPM) to the business level where it
logically belongs, from the IT level
where it mostly resides now. This objec-
tive requires that BPM is accessible at
the knowledge level of business experts
and business analysts. Semantic Web
and, in particular, Semantic Web Ser-
vices (SWS) technology offer the prom-
ise of integrating applications at the
semantic level. Therefore, this project
aims at providing a semantics-based and
context-aware framework, based on

Figure 1: Business Process Composition based on semantic annotations
of services and processes.

Figure 2: Business Process Mediation deals with heterogeneity
in the behavioral interfaces and message formats of processes.

