
AN ARCHITECTURE-CENTRIC APPROACH FOR MANAGING
THE EVOLUTION OF EAI SERVICES-ORIENTED

ARCHITECTURE

Frédéric POURRAZ, Hervé VERJUS
LISTIC, University of Savoie, France

frederic.pourraz@univ-savoie.fr, herve.verjus@univ-savoie.fr

Flavio OQUENDO
VALORIA, University of Bretagne-Sud, France

flavio.oquendo@univ-ubs.fr

Keywords: EAI architecture, evolution, ADL, SOA, web services, architecture-centric approach.

Abstract: The development of large software applications (like EAI solution) is oriented toward the interoperation of
existing software components (like COTS and legacy systems). COTS-based systems are built in ad-hoc
manner and it is not possible to reason on them no more it is possible to demonstrate if such systems satisfy
important properties like Quality Of Service and Quality Attributes. On the other hand, software
architecture domain aims at providing formal languages for the description of software systems allowing
checking properties (formal analysis) and to reason about software architecture models. The paper proposes
an approach that consists in formalizing, deploying and evolving EAI architectures. For that purpose, the
ArchWare environment and engineering languages (especially the ArchWare formal ADL, based on the π-
calculus) and accompanied tools are used.

1 INTRODUCTION

Information systems are now based on aggregation
of existing components that have to cooperate in a
precise manner in order to satisfy user needs and
software functionalities.
A new technology has emerged consisting in
assembling widely distributed services for building a
services-based application, by the way of web
standards such as SOAP, XML, WSDL, etc. A set of
interacting (Web) services is known as a Services-
Oriented Architecture (SOA). One of the main
features of SOA is that services involved are
autonomous (we will discuss such features latter in
this paper) are widely distributed across the Internet.
Information systems are more and more complex,
need more and more functionality provided by
several software applications that already exist
(COTS or legacy systems). Reusing and assembling
existing components (COTS or/and legacy systems)
are questions that cope with some difficulties that
are not covered by classical component-based

programming solutions like EJB, COM+, CCM, etc.
As these are specifications for components
development, they do not address the case of COTS-
based systems, where source code is not available
or/and has been previously developed with other
specifications and programming languages. The EAI
(Enterprise Application Integration) domain
provides integration models and techniques for
assembling heterogeneous software applications in a
pragmatic way. EAI emerging solutions encompass
(1) a distributed architecture using web services and
(2) a description of the web services centric
architecture, expressed using a web services
orchestration/choreography language (i.e. XLANG,
WSFL, BPEL4WS, etc.). Information systems based
on such technology integrate heterogeneous software
components, COTS, using a process-based
integration approach, where the process description
has to insure the execution correctness of the system.
Such information systems, building from COTS,
will be called COTS-based systems in the following.

In such context, an issue is still open: the adequation
between the information system provided (i.e. its
composition) and the functionalities it would able to
provide (i.e. to the end user) and the orchestration of
such functionalities according to business processes.
Because EAI solutions fail in insuring that the
information systems provided succeeds in end-user
needs satisfaction, we need new approaches.
This paper presents our work in formally describe an
EAI solution building from COTS (or legacy
systems). The approach used is based on an
architecture-centric development process where the
system description is the heart of the process. Using
such approach, the (abstract) description can be
checked, refined in order to obtain more concrete
enactable descriptions. The paper will also show
how architectural evolution is supported. We assume
in this paper that COTS are able to interoperate
using web services.
The paper will first present (section 2) the business
case in a European project context. In section 3, we
will introduce the formal approach we follow for
defining, enacting and evolving EAI architectures.
The, section 4 will present the formalization of such
architectures, especially from the evolution point of
view. Deployment and enactment of the generated
services oriented architecture will be discussed in
section 5, while section 6 will conclude.

2 BUSINESS CASE: EAI
ARCHITECTURE FOR AGILE
ENTERPRISES

2.1 Business case scenario

Our business case relates to a company that
manufactures a specific product (an axis – a
mechanical piece). Moreover, this company can
subcontract a part of its manufacturing to a
subcontractor in order to carry out a specific task.

As you know, enterprises (especially Small and
Medium Enterprises) have to be very adaptive in
order to satisfy market changes, business changes,
customer’s needs, etc. Agility stands for an
enterprise being able to quickly change, adapt their
processes according to market changes, without
process, end-user and customer service interruption.
In such way, the EAI architecture has be able to
change dynamically taking account new
requirements and new business contracts.

Agility interests are manifold and covers some
topics among them (Bland dit Jolicoeur et al., 2002):
• Increase of compliance with ISO 9001 V 2000

within and between SMEs due to ability to
identify business processes;

• Competitiveness increases due to ability to
control and adapt business processes;

• Productivity increases due to ability to
synchronize business processes (e.g. in ‘just-on-
time delivery’ in the automotive industry) and, as
a consequence, increase quality of relationship
between SMEs;

• Increase of faith in information system results
due to ability to proof business processes
properties;

• Investment costs reduction due to ability to
integrate existing applications (legacy software
or specific applications).

We adopt an illustrating evolution scenario in EAI
context. In the scenario, several companies COTS
(like ERP, production follow-up software and SPC)
are involved thanks to a choreographer, which will
orchestrate them according to the wished business
process (see figure 1 (a)):
• An ERP (called Infodev) will first send a

manufacturing order to the choreographer, which
will deploy the different operations in
production.

• The operations list will be send to a production
follow-up software (called Alpha3i) and
machines to controlled to a SPC software (called
Arve).

• The scrap number per operation will be returned
to the choreographer, which will next pass this
number to the ERP.

• In parallel, a quality control will be performed by
the SPC software. We can underline that this
operation don’t send any information to the
choreographer, it’s a “vertical” application.

Following a planning step on the Contractor level,
an overload is detected; this overload is transmitted
to the choreographer which starts a process of
invitation to tender with various subcontractors. In
this case, the previous scenario needs to evolve by
adding new business process functionalities in the
choreographer (see figure 1 (b)):
• Within this evolution, the choreographer will

receive an overload (higher than 50 pieces in our
case) manufacturing order from the ERP (named
Infodev).

• Then the choreographer will execute in parallel
the same scenario as previously described for an
order of 50 pieces and a subcontracting process,
which implies a new functionality (a negotiation
service) to the architecture. This new service
consists in finding the best supplier in order to
manufacture the production overload.

 (a)

 (b)

Figure 1: EAI COTS architectures.

2.2 EAI engineering issues

To meet such requirements according to the
evolution scenario, best-suited engineering
approaches have to be chosen.
In the case of complex COTS-based systems (like
enterprise information systems – in our case EAI)
usual and classical engineering approaches fail:
• SMEs need systems that are adapted to their

requirements: the design (including properties)
of such systems is a crucial step but systems
designs/models have to be validated before
implemented (Blanc dit Jolicoeur et al., 2002).

• COTS are specific software components with
which components classical integration patterns
or idioms are not relevant (Estublier et al., 2001)
and (Cimpan et al. 2003): COTS have to be
characterized as well as their integration.

COTS-based system models (when existing) cannot
be checked nor validated. That is, one cannot reason
on models nor analysis can be made on such models.
This lack of formalization has following
consequences:
• Design (of complex systems) expertise cannot be

caught nor maintained;
• There is a gap and discrepancies between the

design and the execution. It is impossible to
guarantee that the execution will be conformant
to the design;

• The COTS-based systems evolution
(substitution, deletion, addition of COTS,
changing system behaviour, process, etc.) is not
well supported nor it can be validated;

• Crucial properties (safety, completeness,
consistency, etc.) of the systems are not taken
into account.

As EAI solutions are located in a distributed context
(distributed enterprises, networked enterprises, …),
the EAI architects are enthusiastic by using web
services as technology for supporting COTS
interoperability. SOAs have to deal with many of the
issues encountered in more classical COTS-based
systems. Web services will be employed as COTS
facets (also called wrappers) that will be
orchestrated in order to satisfy EAI goals (the
production a mechanical piece: an axis in our case).
Web services are accompanied by standards that
support part of the interoperability (i.e. SOAP
protocol, WSDL, etc.).

We propose to follow an architecture-centric
approach taking into account evolution and
proposing some solutions that might meet the needs
issued by the previously identified limitations.

3 A SOFTWARE
ARCHITECTURE-CENTRIC
APPROACH FOR
FORMALIZING EAI SOA

3.1 Architecture-centric approach

The architecture of software intensive system (such
as an EAI architecture) defines the elements that
compose the system, and how they interact. The
software architecture definition can be made
informally, or by using a dedicated language.
Different abstraction levels are considered for
describing the software architecture (Allen and

Garlan, 1997). The use of formal architecture
refinement guarantees the preservation of properties
specified at abstract levels all the way towards
architecture implementation.
The architecture centric development process (see
figure 2) aims at providing means for defining
software intensive systems at a very abstract level.
Such descriptions can be then validated in order to
check systems properties and are refined in a more
concrete description (that allows to deploy the
system in a concrete environment).

Figure 2 - Architecture centric development process

The architecture-centric development process we
propose (see figure 2) is quite different to the
classical software development process (i.e.
waterfall, spiral, etc.): if the system behaviour does
not fit the requirements, the architecture description
can be modified without restarting entirely the
development process. Representations (architectural
descriptions) are also checked at every stage of the
process before generating the code.
The work on architecture centric approaches for
software development has been very fruitful during
the past years, leading, among other results, to the
proposition of a variety of Architecture Description
Languages (ADLs), usually accompanied by
analysis tools. The enthusiasm around the
development of formal languages for architecture
description comes from the fact that such formalisms
are suitable for automated handling. These
languages are used to formalize the architecture
description as well as its refinement. The benefits of
using such an approach are manifold. They rank
from the increment of architecture comprehension
among the persons involved in a project (due to the
use of an unambiguous language), to the reuse at the
design phase (design elements are reused) and to the
property description and analysis (properties of the
future system can be specified and the architecture
analyzed for validation purpose).
Different ADLs have been proposed (Medvidovic
and Taylor, 2000). According to our requirements
we need a formal ADL that will support: the
description of the architectural structure and
behaviour, the properties expression and dynamic

evolution. We also need a way to express processes.
We will introduce the ArchWare approach that
combines interesting formal features in a unified
ADL.

3.2. The ArchWare environment

The main objective of the ArchWare project
(European IST-5 project, number 32360) was to
provide the necessary elements to the engineering of
evolvable software systems. In order to achieve this
goal, the ArchWare project developed an integrated
set of languages and architecture centred tools while
being based on a persisting execution framework
(Morrison et al., 2004).
The ArchWare project provides some engineering
technologies, among them:
• Innovating languages centred architecture

(architecture description language and analysis
language),

• Refinement models,
• Customizable software environments and tools

dedicated to the engineering of evolutionary
software systems.

ArchWare aimed at building a customizable
environment of engineering software, which can be
used to create software architecture centred
environments (Oquendo et al., 2004). This project
considered that a customizable architecture centred
environment is structured in two distinct layers,
namely a runtime framework and a set of
architecture centred tools.
The ArchWare runtime framework (Morrison et al.,
2004) includes an execution engine of architectures
based on evolutionary processes of development, a
refinement process of architecture description and
mechanisms supporting the interoperability of the
environment tools and components (that can be
COTS). Details of the ArchWare environment can
be found in (ArchWare consortium, 2001).
The ArchWare architecture centred tools provides
supports for:
• The definition of the architecture,
• Validation of such architectures (using analysis

tools and software graphical animation tool),
• The checking of the functional and extra

functional properties of architectures,
• The refinement of architecture descriptions from

an abstract level to a concrete level,
• The code generation of the systems in various

programming languages (using explicit rules).

3.3. Architecture evolution support

One of the ArchWare environment key features is
the evolution support ability (Cimpan and Verjus,
2005). On one hand, ArchWare ADL is the language
allowing to describe evolvable architectures (i.e.
architectures that can dynamically evolve); on the
other hand, the ArchWare environment contains an
ADL virtual machine (Morrison et al., 2004) that
supports dynamic evolution (the architecture
description code can be modified while being
interpreted). Then, an architecture description can be
dynamically changed and the runtime architecture
change accordingly (we will present an evolution
scenario latter in this paper). When an architecture
evolves dynamically, one may check the new
architecture against properties or not (it is up to the
architect).
According to our needs, the ArchWare ADL
(Oquendo et al., 2002) is the only one formal ADL
(section 2) that :
• Allows the architecture structural modelling as

well as the behavioural description (as an
extension of π-calculus (Milner, 1999));

• Supports properties/constraints definition;
• Supports dynamic evolution of the architecture.
We will also propose a way to enact services
oriented architecture as the concrete EAI
architecture, following the refinement approach.

4 EAI ARCHITECTURE
EVOLUTION DESCRIPTION

We decided to describe EAI architectures using
ArchWare ADL. According to the architecture-
centric process we adopt (see figure 2), the formal
descriptions can then be refined in order to obtain a
concrete representation (figure 1). At the early stage
of the development process (figure 2), abstract
architectures have to be expressed according to
domain specific characteristics and ilities.
The EAI architecture description contains the code
which represents the first stage of the architecture
(figure 3), with the code allowing the architecture to
request an evolution in order to behave as the
architecture shown in figure 4 The evolution has
also to be expressed at the architectural level (the
evolution is described using the ArchWare ADL
code – it is part of the EAI architectural description)
in order to deal with the evolution that occurs at the
enterprise level.

Figure 3: Business case EAI architecture

Figure 4: EAI architecture after evolution

Main pieces of EAI architecture description code (in
ArchWare ADL) including evolution expression are
presented hereafter. The code contains both the
classical architectural description in terms of
elements (often called processes or components in
ADL) interacting each other, some properties
according to EAI domain and business process code.
It is innovative as the ArchWare ADL language
allows to formalize several facets of an EAI
architecture (topology, properties, business process
and evolution that can focus on part or all of the
architectural artefacts).

The ERP COTS (Infodev) can be defined in
ArchWare-ADL as follow:
 value erp is abstraction(); {
 value getOrder is free connection(String,
 String, Integer, String);
 via getOrder send "order-1", "axe", 100,
 "JUN 17 2005";
 value setQuantity is free connection
 (String, String, String, Integer);
 via setQuantity receive store:String,
 code:String, article:String,
 quantity:Integer;
 done }

According to ArchWare ADL concepts (Oquendo et
al., 2002), each COTS is described as an abstraction
which declares some connections on where
parameters can be sent and/or received.

The ERP COTS has got two sequential actions.
First, it sends the description of the new order via
the “getOrder” connection. Secondly, it will receive
the production report via the “setQuantity”
connection.
According to the ArchWare ADL syntax, the
keyword “done” stands for the terminate action (Tau
in π-calculus).
As well as the ERP COTS, both production report
and SPC COTS are designed by using abstractions.
As previously described, they define some
connections allowing them to send and to receive
parameters.
The definition of the choreographer is also based on
an abstraction description but contains more
complicated actions. After receiving an order via the
“getOrder” connection, the choreographer composes
two processes in parallel:
1. The first one is the internal manufacturing

process. It first calculates the right quantity to
product (100 or the initial quantity if it is less
than 100). After that, it sends the order to
product and to control (via setOrder and
setControl), receives the production report and
transmits it to the ERP (via getQuantity and
setQuantity);

2. The second one requests an evolution in case of
overload detection. It first tests the quantity and
if an overload is found, it will send a request to a
particular ArchWare tool: Hypercode-Editor
(Morrison et al., 2004) (via hypercode_request).
The end-user architect is asked to provide a new
abstraction that corresponds (its behaviour) to the
subcontracting process (see section 5). This latter
is received (remember that one of the powerful
features of the π-calculus is that processes can be
exchanged between other processes) and
instantiated by the choreographer (via
hypercode_reply).

 value choreographer is abstraction(); {
 value getOrder is free connection(String,
 String, Integer, String);
 via getOrder receive code:String,
 article:String, quantity:Integer,
 date:String;

 compose {
 behaviour {
 if(quantity > 50) then {
 value newQuantity is 50; }
 else {
 value newQuantity is quantity; }
 value setOrder is free connection
 (String, Integer, String, String);
 value setControl is free
 connection(String);
 via setOrder send code, quantity,
 article, date;
 via setControl send code;
 value getQuantity is free
 connection(String, String, Integer);
 via getQuantity receive code:String,
 article:String, quantity:Integer;
 value setQuantity is free connection

 (String, String, String, Integer);
 via setQuantity send "stock", code,
 article, quantity; }
 and behaviour {
 if(quantity > 50) then {
 value hypercode_request is free
 connection();
 via hypercode_request send;
 value hypercode_reply is free
 connection(abstraction(String,
 Integer));
 via hypercode_reply receive
 subcontracting_process:
 abstraction(String, Integer);
 subcontracting_process(article,
 quantity-50); } } } }

Finally, the following EAI abstraction that
corresponds to the bootstrap of the EAI architecture
must be defined. This abstraction instantiates, in a
single process, the COTS abstractions previously
defined and unifies all of the connections.
 value eai is abstraction(); {
 compose {
 choreograher() and
 erp() and
 production() and
 spc()
 where {
 choreograher::getOrder
 unifies erp::getOrder
 and ... } } }

Once defined, the EAI architectural description can
be analyzed (see figure 2). Then, the architecture is
deployed as a services oriented architecture and can
be interpreted by the ArchWare runtime
environment. One can note that we are now able to
easily adapt such architecture for other EAI
solutions (by modifying ArchWare ADL code).

The next section will show the refinement consisting
in generating web services WSDL code from a
ArchWare ADL specification,

5 DEPLOYING, ENACTING AND
EVOLVING EAI
ARCHITECTURE AS A SOA

5.1 Architecture deployment and
execution

At the final stage of the refinement (the concrete
architecture), we obtain a Services Oriented
Architecture where web services are used as COTS
facets. The web services allow EAI components
(COTS and legacy system) to interoperate (figure 3).
In such concrete context, all well-known languages
(WSFL, XLANG, BPEL4WS, etc.) and web-based
technologies (WSDL, SOAP, etc.) may be
candidates for supporting the deployment and the
execution of our systems using web services.

In our particular case, the business process is part of
the entire architecture and expressed using
ArchWare ADL (the choreographer is an abstraction
in term of ArchWare ADL and its behaviour is the
business process).
As we introduced previously, the ArchWare runtime
environment enacts the entire architecture (including
business processes). External components (COTS)
will interoperate with the ArchWare environment
through web services while the choreographer will
be part of the ArchWare environment (enacted by
the ArchWare virtual machine).
Due to these considerations, from the architectural
abstract description we generate the COTS web
services concrete description (the WSDL code is
basically obtained from our abstract description of
services the COTS provide - their APIs and only if
the web services do not exist). Generic refinement
rules presented hereafter support the transformation
from ArchWare ADL to WSDL. All other elements
of the abstract architecture are enacted by the virtual
machine.

First rule
When a new connection is declared followed by a send action
on it, WSDL representation can be made by adding news
<wsdl:message> tags, one for the request and one for the
response. In this case, the request corresponding tag is empty
whereas the response corresponding tag defines a parameter
which can be a simple type or can point towards a new type
definition (<wsdl:types> tag) where a complex type is design
(<complexType> tag).

value getOrder is free connection(String,
String, Integer, String);
via getOrder send …

<wsdl:types>
 <schema>
 <complexType name="Order">
 <sequence>
 <element name="param1" type="soapenc:string"/>
 <element name="param2" type="soapenc:string"/>
 <element name="param3" type="soapenc:integer"/>
 <element name="param4" type="soapenc:string"/>
 </sequence>
 </complexType>
 </schema>
</wsdl:types>
<wsdl:message name="getOrderRequest"/>
<wsdl:message name="getOrderResponse">
 <wsdl:part name="param" type="tns:Order"/>
</wsdl:message>

Second rule
When a new connection is declared followed by a receive
action on it, WSDL representation can be made by adding
news <wsdl:message> tags, one for the request and one for the
response.
In this case, the response corresponding tag is empty whereas
the request corresponding tag defines simple type parameters.

value setQuantity is free connection
(String, String, String, Integer);
via setQuantity receive …

<wsdl:message name="setQuantityRequest">
 <wsdl:part name="param1" type="soapenc:string"/>
 <wsdl:part name="param2" type="soapenc:string"/>
 <wsdl:part name="param3" type="soapenc:string"/>
 <wsdl:part name="param4" type="soapenc:integer"/>

</wsdl:message>
<wsdl:message name="setQuantityResponse"/>

Other rules
On the preceding model, ArchWare-ADL description allows to
define the global <wsdl:definitions> tag as well as
<wsdl:portType>, <wsdl:operation>, <wsdl:binding> and
<wsdl:service> tags. All these rules won’t be define in this
article.

5.2. Architectural dynamic evolution

The concrete architecture can now be interpreted.
According to the business scenario we presented in
section 2, the EAI architecture is behaving as the
one shown in figure 1(a). Then, when a production
capability threshold is reached, suppliers have to be
added in order to satisfy the new production
demand. Then, the EAI architecture is now the one
presented in figure 1(b) and is behaving as the latter.
The evolution concerns:
• The architecture topology (by addition of

suppliers – several abstractions in ArchWare
ADL concepts);

• The communication between architectural
elements (i.e. connections between abstractions);

• A new business process with several enterprises
and more COTS involved.

Note that the concrete architectures (SOAs)
presented in figure 1 are not symmetric (in term of
number of architectural elements) to the abstract
architecture detailed in section 4 (figures 3 and 4).
This is due to that more architectural elements
(abstractions) are necessary to be defined in order to
provide functional and non-functional architectural
aspects required by EAI architectures. The concrete
architectures are only composed by all of the
required web services (one per COTS) plus the
ArchWare environment that enact the architecture
(both the enacted architecture and the ArchWare
architecture centred tools).

6 CONCLUSION AND ONGOING
WORK

Building COTS-based system generally fails due to
non-formal approaches (often ad-hoc solutions like
in classical EAI engineering approaches) used. In
(Estublier et al., 2001) and (Verjus et al., 2002) we
claimed that designing and building COTS-based
systems addresses lots of issues: the gap between the
design level and the implementation one and the
evolution support are two of them. Because COTS

(as well as legacy systems) already exist, we “only”
have to deal with the “glue” between such software
components (COTS, etc.). The approach presented
in this paper innovates by providing a formal
approach for the development, deployment and
enactment of an EAI architecture as well as its
dynamic evolution (Cimpan and Verjus, 2005). This
approach combines an unified approach consisting
in refinement steps from specification to
implementation code generation, and a more
pragmatic approach for which we only focus on the
“glue” that have to guarantee the properties of the
COTS-based system the architect is interested. Our
approach is divided in two parts: (1) the definition of
an architecture that is convenient for the design of
COTS-based systems as well as it is also closed to a
concrete architecture (in our case, a SOA) and (2) an
architecture-centric development process using a
formal ADL as a specification language (that deals
with structural aspects and behavioural aspects -
including business processes).
This approach has been validated in the European
ArchWare project and in an R&D project with
SMEs and manufacturing companies. This work is
now continued in order to provide a formal Domain
Specific Language for describing generic SOA in
terms of formal architectural constructs.
Some works focus on business process description
(van der Aalst et al., 2003) in SOA, mostly using
XML-based languages (such as BPEL4WS (Curbera
et al., 2003), WSFL (Leymann, 2001), etc.); some
other focus on services semantic (McIlraith et al.,
2001) description (i.e. OWL-S (OWL, 2003),
WSMO (Priest and Roman, 2004), etc.) for services
discovery, selection and composition. Some
consortiums, projects (i.e. SWSI, Knowledge Web),
aim at addressing all of the SOA facets. Interesting
results are expected. As far from now, such works
do not address formal description (van der Aalst et
al., 2003) from an architectural point of view (where
architectural ilities and constraints checking and
validation are supported), nor they cover evolution.

REFERENCES

Allen, R. and Garlan, G., 1997. A formal basis for
architectural connection. ACM Transaction on
Software Engineering and Methodology.

Blanc dit Jolicoeur, L., Braesch, C., Dindeleux, R.,
Gaspard, S., Le Berre, D., Leymonerie, F., Montaud,
A., Chaudet, C., Haurat, A., Théroude, F., 2002. Final
Specification of Business Case 1, Scenario and Initial
Requirements. Deliverable D7.1b, ArchWare project.

Estublier, J., Verjus, H., Cunin P.-Y., 2001. Building
Software Federation. Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, Las-Vegas, USA.

Verjus, H., Cîmpan, S., Telisson, D., 2002. Formalising
COTS-based federations using software architectural
styles. In Proceedings of the 15th International
Conference Software & Systems Engineering and their
Applications, December 2-5, Paris, France.

Oquendo F., Alloui I., Cîmpan S., Verjus H., 2002. The
ArchWare ADL: Definition of the Abstract Syntax and
Formal Semantics. ArchWare European RTD Project
IST-2001-32360, Deliverable D1.1b, December.

Cimpan S., Verjus H., Oquendo F., 2003. COTS-based
System Design using Software Architectural Styles,
Integrated Design and Process Technology
(IDPT’03), Austin, USA, December, pp. 127-134.

Cimpan S., Verjus H., 2005. Challenges in Architecture
Centred Software Evolution. CHASE Workshop:
Challenges in Software Evolution, Bern, Switzerland.

Oquendo F., Warboys B., Morrison R., Dindeleux R.,
Gallo F., Garavel H., Occhipinti C., 2004. ArchWare:
Architecting Evolvable Software. In proceedings of
the first European Workshop on Software
Architecture, pages 257-271, St Andrews, UK, May.

ArchWare Consortium, 2001. The EU funded ArchWare –
Architecting Evolvable Software - project :
http://www.arch-ware.org

Robin Milner, 1999. Communicating and Mobile Systems:
the pi-calculus. Cambridge University Press.

Morrison R., Balasubramaniam D., Kirby N.C., Mickan
K., Oquendo F., Cimpan S., Warboys B., Snowdon R.,
Greenwood M., 2004. Support for Evolving Software
Architectures in the ArchWare ADL. 4th Working
IEEE/IFIP Int. Conf. on Software Architecture, Oslo,
Norway, June, pp. 69-78

Medvidovic, N. and Taylor, R.N., 2000. A Classification
and Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on
Software Engineering, January.

McIlraith, S., Son, T., and Zeng, H., 2001. Semantic web
services. IEEE Intelligent Systems, 16(2).

van der Aalst, M.P., Dumas, M., ter Hofstede, A.H.M.,
2003. Web Service Composition Languages: Old
Wine in New Bottles? In Proceedings of 29th IEEE
Euromicro Conference, p. 298.

Leymann, F., 2001. Web Services Flow Language (WSFL
1.0).

Curbera, F., Goland, Y., Klein, J., Leyman, F., Roller, D.,
Thatte, S., Weerawarana, S., 2002. Business Process
Execution Language for Web Services (BPEL4WS)
1.0. http//www.ibm.com/developerworks/library/ws-
bpel.

OWL Services Coalition, 2003. OWL-S: Semantic
Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

Priest, C. and Roman, D., 2004. Web Service Modeling
Ontology - Full (WSMO - Full).
http://www.wsmo.org/2004/d12/.

