
 1

A Formal Model-Driven Approach for Grid Application Architectures

David Manset [1,2], Hervé Verjus [1]

[1] LISTIC University of Savoie, Annecy, France
[2] Maat Gknowledge, Toledo, Spain

Abstract

This paper advocates a formal approach to Grid systems development in an effort to contribute to the rigorous
development of Grids software architectures. The presented approach addresses cross-platform interoperability and
quality of service and applies the model-driven paradigm to a formal architecture-centric engineering method in order to
benefit from formal semantic description power (using an Architecture Description Language based on π-calculus) in
addition to model-based transformations. The result of such a novel combined concept promotes re-use of design
models and eases developments in Grid computing.

Keywords
MDE, Software Architectures, ADLs, Grid computing, SOA.

 2

1. Introduction

The new Grid paradigm has been described as “a distributed computing infrastructure for advance
science and engineering” that can address the concept of “coordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organizations” in [1, 2, 3]. This coordinated sharing is
not only file exchange but can also provide direct access to computers, software, data and other system
resources. Grid applications bundle different services using a heterogeneous pool of resources in a so-
called virtual organization. This makes it very difficult to model and implement Grid applications. In
addition, one of the major issues in today’s Grid engineering is that it follows a code-driven approach.
As a direct consequence the resulting source code is neither re-usable nor does it promote dynamic
adaptation facilities as it should, since it is a representation of the Service Oriented Architecture
(SOA) paradigm [4, 5].

As it is directly extracted from the definition of the Grid concept, Grid design should ensure cross-
platform interoperability by providing ways to re-use concretely systems in a heterogeneous context.
Having no guidelines or rules in the design of a Grid-based application is a paradox since there are
many existing architectural approaches for distributed computing applications which could ease the
engineering process, could enable rigorous engineering methods and could promote the re-use [6, 7] of
components in future Grid developments. Although it has been proven from past experience that using
structured engineering methods would ease the development process of any computing system and
would reduce complexity when building large Grid systems, the hype of Grid computing has been and
still is forcing brute force coding and rather unstructured engineering processes. This always leads to a
loss of performance, interoperability problems and generally results in very complex systems that only
dedicated developers can manage.

It is our belief that semi-formal engineering methods in current use are insufficient to tackle
tomorrow’s requirements in Grid computing. In this paper we aim at extending the OMG’s model-
driven vision by providing a set of models enacted within a novel design process. This paper focuses
mainly on the implementation of the model-driven philosophy inside a formal engineering approach.
The key idea of our study is to investigate established concepts in formal architecture-centric software
engineering methods and model-driven concepts in order to tackle Grid engineering problems. Inside a
well-defined and adapted formal approach, we investigate the enactment of our model-driven
engineering process to complete our design framework and provide tools to build the next generation
of Grid applications. The remainder of this paper emphasizes different aspects which are, in our view,
essential to Grid engineering:

- that of offering a user-friendly vision to Grid architects by providing re-usable conceptual building

blocks,
- that of hiding the complexity of the final execution platform through abstraction models, and finally
- that of promoting design re-use to ease further developments.

In order to achieve these objectives, we combine two approaches together and seek advantages from
both of them. On the one hand, we use a formal semantic descriptive power to model-check Grid
applications in terms of correctness and properties; on the other hand, we use a model-driven approach
to promote model re-use, to hide the platform complexity and to translate abstract software
descriptions to concrete usable ones.

The remainder of this paper is structured as follows. Part 1 presents the different approaches we are
using. In part 1.1, we introduce briefly the model-driven paradigm through the OMG’s MDATM [8, 9,
10] architecture. In part 1.2, we introduce the architecture-centric approach and then conclude on a
design approach which is a combination of these two. Part 2 explains how model-driven engineering is
enacted to design Grid applications. Part 3 presents our formal architecture-centric model-driven
approach and the means used to achieve it. Finally, we conclude with identifying future work to be
done with the framework and state the benefits of using it.

 3

1.1 Model-Driven Engineering

Model-driven approaches provide tools to transform models by means of transformation rules in order
to describe and design complex systems at a very high level of abstraction. The main objective of such
methods is to hide the complexity and constraints induced by the targeted execution platform, during
the design phase. Thus, an architect can focus mainly on functional requirements of his application
rather than on non-functional ones. In this paper, we discuss the OMG’s Model-Driven Architecture,
and then introduce our own approach dedicated to Grid applications.

1.2 The OMG MDATM – Model Driven Architecture

The Object Management Group recently introduced the Model-Driven Architecture. This engineering
method is based on generic models called PIM (Platform Independent Model) which are subsequently
translated into PSM (Platform Specific Model) by mapping the PIM to a specific platform using
transformation rules that preserve system correctness. Providing PIMs lowers the coupling between
the design and the underlying technologies and enables interoperability at a high level, the PIM being
completely independent of the final platform. This way of handling interoperability is totally new,
interoperability being addressed at the design level rather than at the technology level. In order to
enact this method, the OMG also provides a set of core standards and technologies: UMLTM (Unified
Modelling Language [11]), MOFTM (Meta Object Facility [12]), XMITM (XML Metadata Interchange
[13]) and the CWMTM (Common Warehouse Metamodel [14]). The main objective of the OMG is the
achievement of a complete design process by introducing an AOM [15] (Adaptive Object Model)
which is the sum of the above listed tools. Beyond the OMG’s vision [10], the idea of autonomic
systems [16, 17] is also appearing. An autonomic system is a system capable of discovering
automatically its environment, and self-adapting as a consequence. Such systems are very high level
applications that only dynamic architectures and well-defined standards for storing, recovering and
managing metadata could handle. In that context the MDATM constitutes a first attempt to tackle
metadata problems, however this paper focuses not on metadata but on enacting the model-driven
concept in a concrete domain such as the automated generation of Grid applications.

By convention and in order to separate clearly the concept described here from that of the OMG, we
will call our approach a model-driven engineering approach (MDE) and will use a Grid-specific
vocabulary. As a matter of fact, our approach differs from that of the OMG in many aspects. The
OMG describes a design method based on model transformations according to meta-models, which is
generic enough to fulfil many requirements in terms of modelling and re-use. In our study we define a
concrete set of key models to design a Grid application from the high level descriptions of each
architectural element to its final deployment on a physical grid of resources. In addition to this we
specify the necessary tools to generate, transform and check models among the whole design process.

Enacting the model-driven paradigm is not an easy route to follow since as yet there are no available
tools or frameworks designed with MDE in mind. For this reason one needs to be aware of available
software engineering methods and paradigms. It is the position of this paper that an MDE approach
can be enacted using architecture-centric methods with relatively little effort.

1.3 Architecture-Centric Engineering Approach

The architecture-centric approach [18] focuses on the software architecture description used to
organise development activities. Thus every stage of the software life cycle – including specification,
implementation, quality attributes and also architectural style [19, 20] – are considered as part of the
process. The work on architecture-centric approaches for software development has been very fruitful
during the past years, leading, amongst other results, to the proposition of a variety of Architecture
Description Languages (ADLs) [21, 22, 23, 24], usually accompanied by analysis tools. These
languages are used to formalize the architecture description as well as its refinement.

The benefits of using such an approach are various. They rank from the increase in architecture
comprehension among the persons involved in a project (due to the use of an unambiguous language),

 4

to reuse at the design phase and to property description and analysis (properties of the future system
can be specified and the architecture analyzed to check their verification). The following Figure [1]
introduces the architecture-centric development process.

The enthusiasm around the development of formal languages for software architecture descriptions
comes from the fact that such formalisms are suitable for automated handling. As discussed later in
this paper, most of these aspects are essential to the enactment of the model-driven paradigm. In our
approach we use this architecture-centric vision as a strong basis to further investigations in enabling
MDE. The formal dimension, in addition to adapted tools, gives our MDE approach its robustness.

1.4 A Combination of Approaches

Focusing on the model transformation aspects, one can notice similarities with the refinement concepts
found in formal architecture-centric software engineering paradigms. Since the main purposes of both
concepts are slightly different (the refinement of an abstract software architecture aimed at making it
more and more concrete) the MDE could benefit from refinement to handle model transformations and
to ensure the model’s correctness. As a matter of fact, given the hypothesis that models of the system
are expressed in a well-formed and standard architectural language capable of refinement, it is
potentially possible to apply refinement actions on models to adapt them with respect to platform
constraints. Thus investigating different platforms can lead to the creation of transformation and
constraint models applicable to an abstract system model. This is the reason why formal architecture-
centric software engineering concepts are very well suited to the enactment of the MDE process.

Thus our position is to combine the architecture-centric and model-driven paradigms to provide the
model transformation and architecture description power for MDE. Combining these two paradigms
makes them more complete with respect to Grid application domain. This combination of approaches
is explained in detail below.

 ArchWare Architecture-based Development

Define Style

Style

Architect
Architecture

Style Description

Application

Application

Architect

Application

Engineer

Refine

Architecture

style

instance of

Architecture

Description

refinement of

Define
Architecture

refinement of

Architecture

Analysis

Architecture
Analyst

 Figure 1 : The Architecture-Centric Development Process

 5

2 A Formal Architecture-Centric MDE Approach

Following our MDE paradigm, we address the challenge of designing, optimizing and refining a Grid
abstract architecture, with respect to different criteria, in order to automatically generate a partial or
complete set of Grid services. From the study we conducted in Grid engineering we consider the Grid
as a SOA and define a set of properties related to Quality of Services (QoS) [25]. Using a formal
approach to describe these views we build a set of models and investigate the feasibility of enacting
this model-driven process. The remainder of this paper is based on a Grid domain-specific vocabulary.
From the Grid requirements and issues faced in previous Grid-based and Grid applications
developments, we define a set of major views of the system and their orchestration along the MDE
process.

2.1 Defining the key models

In Grid engineering, design is largely effected by many constraints; these constraints are of different
types and are introduced either by the architect himself when specifying properties like quality of
service or by the target execution platform. Thus the MDE process dedicated to Grid engineering must
take into account all of these aspects in providing the necessary views or models. As an extension to
the OMG’s concept, we introduce the following models and explain their interactions and
transformations in the drawings 2 and 3. By proposing several models, our approach separates
concerns and addresses different aspects of the application. Thus expertise management and capture is
better than in classical approaches [26, 27]. Each model represents an accurate view of the system
useful for conceptual understanding, analysis and refinement. Unlike the software engineering
refinement process where the system architecture is iteratively refined by the architect, many of the
transformations of models in our MDE are automated. The different models composing our process
are defined as follows:

• GEIM – the Grid Environment Independent Model: an abstract architecture of the Grid
application based on a formal ADL (Architecture Description Language) – a high level
description using domain specific constructs.

• GESM – the Grid Environment Specific Model: a concrete architecture close to the final code and

optimized according to a selected execution platform (a refined ADL description),

• GECM – the Grid Execution Constraint Model: one or more transformation models specifying

which of the quality of service properties to emphasize on and how to do it, (refinement
operations) and

• GETM –the Grid Environment Transformation Model: one or more transformation models

specifying modifications to operate on the GEIM to meet the requirements of the targeted
platform of execution, (refinement operations).

In order to simplify our approach, we will not discuss in detail the other models; however as a
clarification of the concept these models can be defined as follows:

• GEMM – the Grid Environment Mapping Model: a model of translation between an abstract

description and an implementation language (i.e. in charge of defining the mapping between the
semantics of the GESM and a given programming language, for instance Java TM).

• GERM – the Grid Environment Resource Model: a model representing the physical constitution
of the Grid.

•

 6

• GEDM – the Grid Environment Deployment Model : a model specifying how to deploy the
resulting application onto the grid set of resources and

•

• GESA – the Grid Environment Specific Application: the auto-generated source code of the
application (i.e. obtained after GEMM translation).

Figure 2 : MDE Key Models

GESA

Some of these models, such as the GEIM and the GECM, are defined by the software architect during
design, unlike others which are automatically built from the transformation of previous models. As
mentioned above, our model-driven approach uses the architecture-centric refinement concept to
handle model transformations. Automating these transformations helps in decoupling architect’s
functional specifications and platform non-functional requirements. In other words, once the system
architecture has been defined properly and meets the architect’s requirements, the MDE handles the
rest of the process to adapt it to the chosen platform of execution by applying models of
transformations. The next section details these transformations in terms of nature and objectives,
whilst introducing the whole process.

2.2 The Architecture-Centric MDE Process

As explained in the previous section, our approach enacts a set of models. These models can be of two
distinct types; either the model is manually created or it is automatically obtained by transformation.
The transformation itself can then be of two different types too; either the transformation is a
composition of one or more refinement actions or it is a translation mapping. The following figure [3]
details these different models and transformations types.

 7

Here, we make a distinction between two major levels, one is the architecture level of transformation
and the other is the implementation level of transformation. Respectively, the upper part of the
drawing concerns models independent of the platform which are re-usable for further design, whereas
the lower part concerns models dedicated to platforms, which are, in consequence not re-usable.

Having introduced the approach and models, we come now to a short example to demonstrate a full
workflow of model creation, transformation and enactment. Based on our knowledge of Grid systems,
we take as an example a well-known service: the File Replication Service (FRS).

2.3 The File Replication Service Example

In many Grid systems, there is a service (the File Replication Service, FRS) charged with remote file
replication for local processing. Whenever a service or user asks for a remote file, the FRS is called to
download and create a replica of the file. Using our approach, an architect would create a GEIM
model describing the topology of the service in terms of ports, connections, attributes as well as its
internal behaviour. Note that the underlying conceptual view used to describe architectures in our
method is the Component and Connector Style. Basing our descriptions on this paradigm allows us to
tackle most distributed systems’ descriptions. As shown in the following Figure [4], our architecture
contains two main services, one is the “User Interface” and the other is the “File Replication Service”.

The User Interface is used to request the Grid for a remote file to be copied locally. Thus both services
are linked by means of Connectors named ‘toFRS’ and ‘fromFRS’. The connectors handle data format
processing and communication exchanges.

Figure 3 : MDE Process

 8

The specification of the FRS (the lower part of Figure 4) shows that the architect has described a
client/server architecture with a basic authentication mechanism. An architect can assign constraints to
each architectural element via the GECM model. In the current example, the architect could specify a
QoS attribute for the FRS component requiring a higher level of security between the Client and the
Server components (e.g. the Public Key Interchange – PKI - model [29]). The system would then
apply transformations to the GEIM model corresponding to specific constraints in the GECM. After
interpretation and transformation of the models, the architect would obtain a new enhanced GEIM
model that satisfies his requirements as detailed in Figure 5. This initial level of transformation
corresponds to the upper part of Figure 3.

In the transformed specification of Figure 5, one can see the PKI security model. Here some
refinement operations have been applied to the GEIM in order to make it compliant to the expressed
constraints:

- “add”: two new components were added (Decryptor and Encryptor in charge of encrypting data
transmissions between the Client and the Server),

Figure 4 : The FRS, Simple Authentication

Figure 5 : The FRS, PKI-based Authentication

 9

- “remove”: the connection data has been removed between Client and Server components,

- “unifies”: new connections were added and linked together.

Once the GEIM has been completed, a platform of execution is selected. From this choice, a known
constraint model (GETM) is applied to the GEIM in order to adapt it. This latter operation is
represented in the lower part of Figure 3.

Again, some refinement operations are applied to the GEIM, in our case:

-“replace”: connectors linking elements “Graphical User Interface” and “FRS” are replaced by ones
specifying concrete data format and message exchanges.

Thus the concrete system model (GESM) is obtained, ready to be translated into a suitable
programming language (according to the platform), compiled and deployed.

This example has introduced two model transformations to our approach. The transformation from
Figures 4 to 5 has allowed the introduction of the architect’s constraints related to QoS (i.e. security).
The second transformation shows a simple case of system model adaptation to a given platform. One
can notice that the example GEIM is re-usable; this model is independent of any execution
environment. In Grid computing, the second transformation partially resolves the well-known problem
of moving from Web Services to Grid Services as a result of following the OGSA [30, 31] standard.

3 Enacting MDE, A Concrete Framework

3.1 ArchWare: the Formal Architecture-Centric Approach and Toolkit

ArchWare [32] is an architecture-centric engineering environment allowing design from formal
descriptions of software. Such a formal method enables the support of critical correctness
requirements and provides tools to guarantee system properties and reliable execution. By adding the
model-driven dimension to this formal approach, Grid architects can benefit from a complete and
reliable software engineering environment promoting system correctness, cross-platform
interoperability and optimization facilities. ArchWare delivers a set of formal languages and
corresponding tools to enable reliable design; among them we find a refinement specific language:

- the ArchWare Architecture Description Language, defined as a layered language used to describe
software architectures (supporting both structure and behaviour as well as properties like QoS,
constraints, etc,

- the ArchWare Architecture Refinement Language (ARL), used to describe software architectures
and refine them accordingly to transformation rules.

Figure 6 : The FRS, Concrete Model

 10

These languages used together with the corresponding tools constitute the ArchWare environment
framework. In our approach we demonstrate how a model-driven process can be enacted using
ArchWare facilities. As mentioned in section 1.3 there are noticeable similarities between MDE model
transformations and architecture refinement operations. As a matter of fact, refinement consists of
adapting and modifying an architecture through a set of transformation rules based on some rewriting
logic. From this point of view, refinement can be seen as an architecture-level transformation within
the MDE process. In the rest of this paper, we investigate the ArchWare refinement process which is,
we believe, essential to the enactment of a formal architecture-centric MDE.

3.2 The ArchWare Refinement Concept

Complex systems cannot be designed in one single step. In a stepwise architecture refinement, a
sequence of steps starting from an abstract model of the architecture leads to a concrete,
implementation-centred model of the architecture. These refinement steps can be carried out along two
directions: “vertical” and “horizontal”. The concrete architecture of a large software system is often
developed through a “vertical” hierarchy of related architectures. An architecture hierarchy is a linear
sequence of two or more architectures that may differ with respect to a variety of aspects. For instance,
an abstract architecture containing functional components related by data flow connections may be
implemented in a concrete architecture in terms of procedures, control connections, and shared
variables. In general, an abstract architecture is simpler and easier to understand; a concrete
architecture reflects more implementation concerns. “Vertical” refinement steps add more and more
detail to abstract models until the concrete architectural model has been described. A refinement step
typically leads to a more detailed architectural model that increases the determinism while implying
properties of the abstract model. “Horizontal” refinement concerns the application of different
refinement actions at different parts of the same abstract architecture, for instance, by partitioning an
abstract component into different parts at the same abstraction level.

Refinement is the formal relation that relates two different models, one abstract another more refined:

abstractModel => refinedModel

Refinement relations are transitive and reflexive:

abstractModel ==> refinedModel1 ==> refinedModel2 ==> … ==> concreteModel

Thus, a concrete model is a refinement of an abstract model via intermediate steps:

abstractModel ==> concreteModel

An architecture concrete model can be thought of as just another architectural model in a style suitable
for implementation.

Thus, the refiner [33] handles an exhaustive set of refinement actions and types. Architecture
refinement can be carried out in a series of steps, a basic step being defined in terms of basic
refinement actions that can transform an architecture. An architectural model can be refined into
another more concrete (i.e. more refined) architectural model. A refinement step can be carried out by
the application of one or many refinement action(s). The ArchWare ARL language is the formal
expression of these transformations which aims at preserving upper abstract architecture properties
while modifying it. This language provides a refinement calculus on architecture descriptions where

 11

application of actions on architecture descriptions yields architecture descriptions that are related by
the refinement relation.

The ArchWare refiner is a wrapper to the programming language Maude [34, 35]. Maude is a “formal”
declarative programming language based on rewriting logic in the field of algebraic specification and
concurrency modelling.

A refinement – as shown in Figure [7] - is a more detailed description of a parent abstraction. What
makes the ArchWare project original is the facility to ensure that decompositions preserve any
rigorously defined properties of the parent. At each level ArchWare supports the re-use of existing
architectural models and, at the concrete level, architecture-based code generation. Furthermore,
ArchWare supports the analysis of architecture descriptions with respect to syntactic and semantic
checks to ensure the relative correctness of two architectures (in possibly different architectural levels)
in the refinement process.

In terms the description of refinement operations, a transformation model is a combination of typical
refinement actions like add, remove, replace, etc. For instance, the following is the formal expression
in ARL of a “remove” action:

 on a : architecture action removeTypeArchRef is refinement (

 t : type) {

 pre is { a::types includes? t }

 post is { a::types excludes? t }

 } as { a::types excludes t }

3.3 A Refinement Process in an MDE perspective

In our approach, we focus on both aspects of the refinement – i.e. the “vertical” and the “horizontal”.
Our implementation of the model-driven concept is different and goes beyond its main purpose. Our
objective is not only to refine an architecture to a concrete and “close to final” code form specific to a
given hosting environment, but also to optimize it. We propose two ways of using the model-driven
process in Grid engineering. The first consists of optimizing a given abstract architecture according to
expressed users’ requirements in terms of quality of services (QoS). The second consists of optimizing
and modifying an architecture according to the targeted execution environment. As mentioned in

π-ADL

Refiner

ARL

π-ADL

Application
Code

Figure [7], The ArchWare Architecture-Centric Development
Process

 12

Figure [8], we build transformation models – directly interpreted by the Refiner – which ensures the
correctness of the resulting model and satisfies platform specific requirements.

As explained in previous sections, ArchWare provides reliable refinement facilities through the
Refiner tool, based on the formal language ARL. The implementation of the ARL operational
semantics (the refinement actions) is achieved by Rewriting Logic in Maude where refinementActions
become rewrite rules. The whole Refiner system has been formally specified in Core Maude and
successfully tested in the ArchWare project. The Refiner is in fact a Maude specification of about
1500 lines, introducing system and functional theories to the understanding of the ARL language.

Here, our objective is not to re-develop existing ways of refining models but rather to investigate the
usability of existing methods in the context of MDE. From our investigations, the Refiner tool
developed in ArchWare appears to be a very good candidate. The Refiner addresses the main type of
transformation in our process. In that context, enabling MDE requires the expression and
consideration of external models of transformations described with the ARL formalism. The Refiner
accepts transformations to apply on an architecture as parameters; its internal architecture remains
unmodified and still relevant to our approach. This is what is discussed in Figure [8]. Thus enacting
the MDE in the ArchWare Refiner architecture is fairly straightforward; the biggest task in that
process being the generation of the GECMs and GETMs models themselves.

Given the flexibility of our generic Refiner and relying on the correctness of our transformation
models, the resulting tool is able to tackle every aspect of model transformations needed in Grid
development.

4 Future Work

In this paper we presented a technique for specifying Grid applications by modeling and by
transforming these models to automate the adaptation to specific platforms. Since the development of
this approach is nearing completion, we are now focusing on QoS attributes and their corresponding
views. We have started defining an extension to the ARL language in order to increase its descriptive
power while not modifying its core semantics. This work is done in collaboration with Web Services
practitioners, to make it re-usable in the context of Service composition. As a matter of fact, QoS

Transformation models

GEIM

π-ADL

Refiner

GEIM

GESM

Application
Code

GECM

GETM

Refiner

Figure [8], The Refinement Process in an MDE Perspective

parameters

 13

properties defined at the design level can be useful when achieving Service compositions.

In the previous sections, we described a study that illustrates how our approach can tackle QoS
specifications in addition to platform requirements. Our study leads to an investigation of the most
frequently used platforms in Grid computing which will result in the required GETM models. The
power of our approach depends mainly on the correctness of these models; consequently great care is
being taken to ensure this. As a proof of concept, the engineering framework being developed is
enacting the combination of the formal architecture-centric and model-driven approaches introduced
previously. In its current state, it is already capable of handling most of the presented models and
transformations. In future we shall investigate case studies to validate its usability and promote its
user-friendliness. Since this approach is based on the concepts of re-use and execution platform
independence our engineering framework is not limited to the Grid domain. The same approach could
tackle other developments based on the Service Oriented Architecture vision such as web services
based applications (i.e. online traders, booking systems, video on demand system etc).

Thus, the benefits of using our approach are numerous. Application models designed using our
framework are persistent and re-usable, as long as they are independent of the platform. For instance,
one can use libraries and previously stored models to design new applications. The approach is
scalable; one could extend the scope limitation of the framework by simply providing corresponding
platform constraint models. And finally, from establishment of well-known architectural concepts, the
framework brings the user to a high level of description while promoting user-friendliness through a
simple semi-automated graphical user interface.

Finally, with respect to model transformations, another interesting area of future research is the
development of a decision support system to help users through model-driven transformations. Indeed,
some of the adaptations needed to satisfy platforms can lead to critical decisions. We are using the
example described previously and others, to elicit the framework requirements.

5 Conclusion

In this paper we investigated model-driven process enactment using a formal architecture-centric
approach to designing Grid systems. We analyzed the needs for this paradigm and shown clearly the
feasibility of its implementation using the ArchWare tools. Our method was also applied to more
elaborate models specific to the Grid domain in order to demonstrate that MDE can be used from
design to deployment of an application. In this vision, our model-driven approach covers all the
aspects required in the development of complex distributed systems such as Grids. The approach
described here extends the OMG’s vision by concentrating on the detail of models and
transformations; and on categorizing them into different types. This paper is a first investigation of the
model-driven paradigm enactment using reliable, established formal architecture-centric concepts.

Besides supporting the usefulness of ArchWare ARL and related tools, we are able to draw a number
of general conclusions. We learned that the model-driven approach is a very useful paradigm when
addressing cross-platform developments and problems of re-use but it must be dependent on a rigorous
basis to be efficient. The formal dimension brought by ArchWare is one of the key points of our
successful implementation. Similarly we learned that QoS attributes are not easy to quantify in
models. There is a true lack of standards that could help significantly when considering resource
comparisons. In the context of other engineering frameworks and given the basic concepts we have
now in hand, our approach can provide directly relevant benefits to the practice of Grid system
engineering. From our experience, we believe that MDE approach is an important contribution to the
development of new Grid systems.

 14

ACKNOWLEDGEMENTS

The authors wish to thank their Home Institutions and the European Commission for financial support
in the current research and to gratefully acknowledge Karim Megzari for his contribution on the
refinement aspects of software architectures.

REFERENCES

[1] I. Foster, C. Kesselman & S. Tueke., “The Anatomy of the Grid – Enabling Scalable Virtual
Organisations”, Int. Journal of Supercomputer Applications, 15(3), 2001.

[2] I. Foster, C. Kesselman J. Nick & S. Tueke., “The Physiology of the Grid – An Open Services Grid
Architecture for Distributed Systems Integration”. Draft document at.

[3] Dennis Gannon, Kenneth Chiu, Madhusudhan Govindaraju, Aleksander Slominski., “An Analysis
of the Open Grid Services Architecture“, Department of Computer Science Indiana University,
Bloomington, IN andSteven Tuecke, Karl Czajkowski, Jeffrey Frey, Ian Foster, Carl Kesselman,
Steven Graham., “GRID Service Specification“ (2002).

[4] SOA – Service-Oriented Architectures An Introduction. See
http://www.developer.com/design/article.php/1010451 and

http://www.developer.com/services/article.php/1014371.

[5] Kishore Channabasavaiah, Kerrie Holley., “Migrating to a Service-Oriented Architecture”, IBM.

[6] Aoife Cox., “An Exploration of the Application of Software Reuse Techniques to the Location of
Services in a Distributed Computing Environment”, thesis report, University of Dublin, September
2004.

[7] Thomas Hemmann., “On the Reuse of Software Engineering, Reuse Approaches and Techniques
in Knowledge Engineering”.

[8] Object Management Group, MDA website, http://www.omg.org/mda/ and
http://www.omg.org/mda/specs.htm

[9] “MDA Guide Version 1.0.1”, OMG

[10] Anneke Kleppe, Jos Warmer, Wim Bast, “MDA Explained: The ModelDriven Architecture™:
Practice and Promise”, Addison Wesley Professional (2003), and Rick Kazman, Steven G. Woods, S.
Jeromy Carrière, “Requirements for Integrating Software Architecture and Reengineering Models:
CORUM II”. Software Engineering Institute, Carnegie Mellon University

[11] Object Management Group, “Unified Modeling Language Specification, Version 1.4”, September
2001.

[12] Meta Object Facility, Document -- ptc/04-06-11 (MOF 2.0 Core Specification), See
http://www.omg.org/cgi-bin/doc?ptc/2003-10-04

[13] XML Metadata Interchange (XMI), version 1.2, See : http://www.omg.org/cgi-
bin/doc?formal/2002-01-01

[14] Common Warehouse Metamodel, See :
http://www.omg.org/technology/documents/formal/cwm_mip.htm

[15] Adaptative Object Model, See : http://adaptiveobjectmodel.com/

[16] “Enabling Autonomic, Self-Managing Grid Applications”, Z. Li, H. Liu, and M. Parashar, The
Applied Software Systems Laboratory, Dept of Electrical and Computer Engineering, Rutgers
University.

[17] “Enabling Autonomic Grid Applications: Requirements, Models and Infrastructure”, M. Parashar,
H. Liu, Z. Li, C. Schmidt, V. Matossian, N. Jiang. The Applied Software Systems Laboratory, Dept of

 15

Electrical and Computer Engineering, Rutgers University.

[18] “An Introduction to Software Architecture”. D.Garlan and M.Shaw. Advances in Software
Engineering and Knowledge Engineering, Volume 1, World Scientific Publishing Co. 1993.

[19] Garlan, D. “What is Style?”, Proceedings of Dagshtul Workshop on Software Architecture,
February 1995, and G.Abowd, R.Allen and D.Garlan., “Formalizing Style to Understand Descriptions
of Software Architecture”. ACM Transactions on Software Engineering and Methodology, pp. 319-
364. October 1995.

[20] Garlan, D., Monroe, R. and Wile, D., “Exploiting style in architectural design environments”,
Proceedings of SIGSOFT’94 Symposium on the Foundations of Software Engineering, pp 179-185,
ACM Press, December 1994, and G.Abowd, R.Allen and D.Garlan., “Using Style to Give Meaning to
Software Architectures”. Proceedings of SIGSOFT'93 : Foundations Software Eng., ACM. New York,
1993.

[21] F.Oquendo, S.Cimpan, and H.Verjus., “The ArchWare ADL: Definition of the Abstract Syntax
and Formal Semantics.” ARCHWARE European RTD Project IST-2001-32360. Deliverable D1.1b.
December 2002.

[22] Medvidovic, N., and Taylor, R.N., “A Classification and Comparison Framework for Software
Architecture Description Languages”, Technical Report UCI-ICS-97-02, Department of Information
and Computer Science, University of California, Irvine, February 1997.

[23] Neno Medvidovic., “A Classification, Comparison Framework for Software Architecture
Description Languages”. Technical report, Dept of Information, Computer Science, Uni of Irvine
California 96.

[24] Sorana Cîmpan (InterUnec), Fabien Leymonerie (Thésame), Flavio Oquendo, “State of the art on
Architectural Styles: Classification and Comparison for Software Architecture Description
Languages”, (InterUnec), 2003.

[25] Rikard Land, Mälardalen,. “Improving Quality Attributes of a Complex System Through
Architectural Analysis – A Case Study”, University, Department of Computer Engineering.

[26] Luigi Guadagno and Xiaoping Jia., “PSM Advisor: A Method for the Selection and Evaluation of
Platform-Specific Models”, DePaul University, School of Computer Science, Telecommunications
and Information Systems, Chicago.

[27] “Using object-oriented typing to support architectural design in the C2 style”.
N. Medvidovic, P. Oreizy, J. E. Robbins, R. N. Taylor 4th ACM Symposium on the Foundations of
Software Engineering (SIGSOFT), Oct 1996.

[29] Public Key Interchage, See : http://www.ietf.org/html.charters/pkix-charter.html

[30] I. Foster, D. Gannon., “The Open Grid Services Architecture Platform”, GWD-R (draft-ggf-ogsa-
platform-2), February 2003.

[31] I. Foster, C. Kesselman, S. Tueke, K. Czajkowski, J. Frey, S. Graham, T. Maquire, T. Sandholm,
D. Snelling, P. Vanderbilt, “Open Grid Services Infrastructure (OGSI)” Version 1.0, June 2003.

[32] The EU funded ArchWare – Architecting Evolvable Software - project : http://www.arch-
ware.org.

[33] Chaudet C., Megzari K., Oquendo F., A Formal Architecture-Driven Approach for Designing and
Generating Component-Based Software Process Models, 4th World Multiconference on Systemics,
Cybernetics And Informatics (SCI 2000), Track on Process Support for Distributed Team-based
Software Development (PDTSD), Orlando, Floride, USA, July 2000, pp. 700-706 and

[34] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, and J. Meseguer. «Metalevel
Computation in Maude ». In 2nd International Workshop on Rewriting Logic and its Applications
(WRLA'98). Electronic Notes in Theoretical Computer Science, Vol. 15. 1998, and

[35] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J.F. Quesada. «Maude:

 16

Specification and Programming in Rewriting Logic ». User’s Guide Maude 99, and M. Clavel, F.
Durán, S. Eker, J. Meseguer, and M.-O. Stehr. «Maude as a Formal Meta-Tool. In World Congress on
Formal Methods » (FM'99). Lecture Notes in Computer Science, Vol. 1709, pp. 1684-1703. 1999 and
M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J.F. Quesada. «A Maude
Tutorial ». Manuscript, Mars 2000.

