Maintaining and Evolving Service Oriented Architectures Using a m-calculus
Based Approach

Hervé Verjus and Frédéric Pourraz
University of Savoie - Polytech’Savoie
LISTIC - Language and Software Evolution Group (LS-LSE)
BP 80439, 74944 Annecy-le-Vieux Cedex
{herve.verjus;frederic.pourraz@univ-savoie.fr}

Abstract

Web services are often employed to create wide dis-
tributed evolvable applications from existing components
that constitute a service-based software system. Services-
Oriented Architectures promote loose coupling, services
distribution, dynamicity and agility. As services involved
in a SOA are remote and autonomous services, the SOA de-
signer does not control them and unpredictable behaviour
can occur. Services orchestration is a key issue in order to
fit expectations and reach objectives. Thus, service-oriented
architectures have to be designed and deployed with rigor
in order to be plainly useful and quality aware. Orchestra-
tion languages (BPELAWS, BPML, etc.) fail in some points
due to the lack of formalization and expressiveness, partic-
ularly when addressing service-based architecture mainte-
nance and evolution. This paper presents Diapason, a -
calculus-based engineering environment that allows us to
formally support SOA maintenance and evolution whatever
the changes may occur during the services orchestration
lifecycle.

1 Introduction

Building a software-intensive system from existing soft-
ware blocks of computation is not a novel idea: these blocks
are sometimes called objects, sometimes they are called
components, modules, etc. As the blocks are widely dis-
tributed accross the Internet, designing a software-intensive
system from these blocks is not so easy. In the last ten
years, huge of work has been dedicated to design and deploy
software-intensive distributed systems [9, 7]. As EAI solu-
tions [10, 31] and Component-Based Systems [27, 42, 15],
such systems are supported by software blocks that are
strongly integrated by using technologies that cannot eas-
ily support changes. But now, we speak about time to mar-

ket, enterprise agility and software-intensive system adapt-
ability, i.e. software intensive systems being able to re-
act to business changes and modifications. Software in-
tensive systems maintenance, evolution is becoming a key
issue [18, 6] in such context. In that perspective, recent
works focus on one hand on designing a system from a high
level of abstraction in order to reason about it and to con-
trol it: software architecture field copes with such objectives
[13, 36]; on another hand, providing approaches and tech-
nologies for supporting software-systems evolution is also
very challenging [22, 21, 5].

As the authors wrote in [17], we witness a gradual evo-
lution from the first generation of service-oriented systems
which were based on monolithic components that could
be reconfigured at compile time, to the second generation
of service-oriented systems which are based on vertically-
integrated components that can be adapted and reconfig-
ured at installation, and to some extent at runtime, and to-
wards the third generation of service-oriented systems that
will be cross-vertically integrated, context-sensitive, and re-
configurable in an autonomic, ad-hoc manner [12].

One of the main interest of Services-Oriented Archi-
tectures [27, 17, 28, 35] is basically the underlying abil-
ity of such architecture to inherently being evolvable; be-
cause the underlying idea of SOA is that the services (that
can be defined as software functionality packages accessi-
ble through a networked infrastructure) are loosely coupled
and the SOA could be adapted to its environment. P2P ar-
chitectures illustrate such idea when, for example, a ser-
vice is no more available and could be replaced dynami-
cally by another (we will discuss in section 4 about the way
of dynamically replacing/changing such services either by
another service, either by the same service being modified).
As P2P becomes more popular, B2B, B2C architectures are
appearing and SOA is becoming as a new way of building
software-intensive systems, supporting automated activities
that were traditionnaly only supported by software appli-

cations. Then, the same needs and questions we address
to software applications are now addressed also to SOAs,
taking into account SOA’s characteristics: what about the
quality of SOAs ? How can we ensure that SOA fit require-
ments, satisfy user’s needs ? How are SOAs able to evolve
according to changes ? How SOAs can be maintained over
time ? How can we ensure that the executed SOA is consis-
tent with the design ?

But SOAs are not traditionnal software applications: ser-

vices may be heterogeneous, widely distributed and are
loosely coupled. Loose coupling is achieved through en-
capsulation and communication through message passing;
technology neutrality results from adopting standardized
mechanisms; and rich interface languages permit the ser-
vice to export sufficient information so that eventual clients
can discover and connect to it [27]. SOA paradigm has a
substantial impact on the way software systems are devel-
oped [17]. Thus, SOAs suggest new requirements and new
desires. We investigate in proposing an approach for for-
mally designing, checking, deploying and executing SOAs
(services-based software applications) that deal with such
questions and mentionned issues.
The Part 2 of this paper will introduce a SOA-based sce-
nario that will illustrate evolution requirements and will
present some claims. Section 3 will present related work
and our motivations. Section 4 will present our approach,
called Diapason, for designing and deploying Web-service-
based architectures and will illustrate it through the scenario
introduced in section 2. The section 5 will then conclude.

2 Anillustrating scenario

Let us consider a virtual print shop that proposes print
functionalitie to clients. There are several and remote print
servers that may respond to a client’s request. Our purpose
is to hide the print servers distribution to the client by pro-
viding a sole print service. Such service will orchestrate all
print shop services in order to best satisfy the client. That
consists in determining the best policy in order to respond
to the client. Such policy could be defined taking account
some criterias like print server availability, capability, net-
working time, etc. At a first glance, the print servers are
able to provide the printing quantity in their print queues.
When a client’s request occurs, we are defining a simple or-
chestration policy that consists in selecting the print server
that has the smallest printing quantity. The client’s print-
ing resquest it sent to the selected print server. The system
implements such policy. Let us now imagine that policy is
changing (whatever the reasons are) and wants to take into
account the case of a printing quantity equals to “-1”. In
this case the print services do not only provide the printing
quantity their are dealing with, but also they are now pro-
viding the print server status: “suspended” if the printing

quantity equals to “-1”. We now consider in our scenarios,
that one on the two print servers’s status is becoming “sus-
pended”, or when a server is no more available (network
failure, etc.), the choosen print server is the sole that is cur-
rently available.

End User |

r
PrintServer
¢ int getQuantity()

* void sendPrintJob(byte[] printJob)

r
PrintServer
* int getQuantity()

* void sendPrintJob(byte[] printJob)

Load-balancing
process

[

\.

Figure 1. The virtual print shop architecture

We only will concentrate on the load-balancing process
(see Figure 1) among print servers in order to define the
best-suited policy. This virtual print shop will be imple-
mented as a SOA. The architecture basically comprises two
print services (that are print servers’s proxies providing op-
erations like getQuantity, sendPrintJob). The scenario is il-
lustrating an SOA that will change over time, depending on
the print servers’s availability and status.

Part of the WSDL print services definition is given in the
following:

<wsdl:definitions>

<wsdl:message name="getQuantityRequest"/>
<wsdl:message name="getQuantityResponse">
<wsdl:part name="quantity" type="soapenc:int"/>
</wsdl:message>
<wsdl:message name="sendPrintJobRequest">
<wsdl:part name="printJob" type="soapenc:byte[]"/>
</wsdl:message>
<wsdl:message name="sendPrintJobResponse"/>
<wsdl:portType name="PrintServer_PortType">
<wsdl:operation name="getQuantity">
<wsdl:input message="impl:getQuantityRequest"/>
<wsdl:output message="impl:getQuantityResponse"/>
</wsdl:operation>
<wsdl:operation name="sendPrintJob">
<wsdl:input message="impl:sendPrintJobRequest"/>
<wsdl:output message="impl:sendPrintJobResponse
"/>
</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>
Such WSDL services definition extract does not contain

< wsdl : service > and < wsdl : binding > tags for
simplication and code consiness purpose. Remember that

these services are supposed to be widely distributed and
would be available on the Internet (their URLs could be
known). As we consider services as black boxes (we only
have their API describing the operations each service pro-
vides), we do not control how services are implemented,
when and how they can be changed, maintained over time.
Maintainability of a SOA is a key issue.

3 Motivations
3.1 Related work

In [17] the authors present challenges in SOA engineer-
ing domain that encompass requirements, architecture, de-
sign, implementation, testing, deployment and reengineer-
ing. The authors mentionned, amongst other, the following
issues:

e thanks to the architecture:

— services-oriented frameworks,
— platform-independent architectural styles,

— non-functional-attribute-driven design;

e thanks to the design:

design pattern,

platform-specific models,

personalization and adaptation,

service choreography and orchestration;

e thanks to the implementation:

model-driven approaches,

template-based code generation,

language extensions to support service-oriented
development,

transformation frameworks;
e thanks to the testing:

— architecture-level: proof-of-concept, transaction
management, quality of service, load/stress test-
ing,

— global-level dynamic: composition, orchestra-
tion, versioning, monitoring, and regression test-
ing;

e thanks to maintenance and reengineering:

— evolution patterns,

— dependency and impact analysis,

— infrastructures for change control and manage-
ment,

— tools, techniques and environments to support
maintenance activities,

— multilanguage system analysis and maintenance,
— reengineering processes,

— tools for the verification and validation of com-
pliance with constraints,

— round-trip engineering.

Related to this, there are many additional opportunities
that our approach will deal with:

e Languages for services orchestration and composition

e Reasoning about services compositions

Integration by non-experts

Orchestrations (fragments) reuse

e Services orchestration maintenance and evolution sup-
port

Works arround services composition are manifold. They
range from services choreography, to services orchestration
[29]. Basically, services choreography focuses on messages
between actors (even they are not really identified) involved
in business processes. Services choreography brings an ab-
stract view of process interactions but does not aim at focus-
ing on process execution. Services orchestration addresses
business process through services invocations scheduling
and organisation. Services orchestration aims at defining
executable processes by providing orchestration languages
(amongst the most well known BPELAWS [3, 41], XLANG
[37], WSFEL [19], BPML, etc. [29]) that are executable lan-
guages (by the way of workflow engines). BPEL4WS al-
lows to define abstract business processes and executable
processes. But such languages lack in services orchestra-
tion reasoning, reuse, dynamic maintenance and evolution
[28, 32]: i.e. business processes expressed using these lan-
guages cannot be formally checked, nor they can evolve dy-
namically. When services are modified, the orchestration
has to be manually modified accordingly and process ex-
ecution cannot be dynamically changed. [35] presents a
framework for the use of process algebra in web services
compositions. The authors distinguish two layers: an ab-
stract layer for which process algebras can be used and a
concrete layer using classical services description, orches-
tration and choreography languages (WSDL, BPEL4WS,
WS-CDL). Services are implemented with programming
languages (Java, C#,...). The abstract layer allows the de-
signer to reson on services compositions before translating
such formal compositions to semi-formal ones. The formal

mapping between the two layers deals with the semantic
consistency between the layers as the executable layer is
less powerful than the abstract layer. As consequence, we
cannot guarantee that the implemented services orchestra-
tion will be totally compliant with the designed one. As
the authors promote services orchestration languages such
as BPEL4WS, there is no novel approach for services or-
chestration deployment and enactment.

3.2 SOA engineering: needs for a new ap-
proach

Human-centric activities are more and more supported
by software applications, most enterprises relying on an en-
terprise information system, which has to evolve accord-
ing to requirements, new technologies, etc. Thus, evolution
and quality of software systems is a major issue [2, 22],
related to changes that may occur at different level (mar-
ket, functionalities, needs, etc.). SOAs are services-based
applications for which classical software engineering ap-
proaches fail due to the SOAs’s specificities (services are
heterogeneous, autonomous, widely distributed and loosely
coupled). In other words, when building an SOA, the de-
signer does not control the services he wants will use. In
the case of web services, the designer does not know exactly
which services will be invoked, because web services dis-
covery and lookup are dynamic and are resolved at runtime.
Nevertheless, as SOAs are more and more used in order
to support widely distributed software-intensive systems in
plethora of domains (business, manufacturing, health, grid-
based applications, military, etc.), designing and enacting
SOAs is becoming very challenging [28]. Traditionnaly, the
evolution is often considered at the latter stages of software
system development process, i.e. implementation and ex-
ecution, mostly by adopting pragmatic approaches [8], but
it is rarely studied in the earlier stages (design, modelling,
specification). We agree with [18], who indicates that evo-
lution should be studied at each software development pro-
cess stage in order to notably reduce costs. We claim [39]
that some evolutions could be taken into account during the
design and would not have to be postponed to latter phases,
namely the implementation or runtime. Our approach deals
with remote and distributed services, considering them as
autonomous “black boxes”. The services orchestration has
to be carefully defined in order to avoid uncontrolled and
unexpected behaviour and result. The next section will in-
troduce a new approach called Diapason. Diapason aims
at providing a layered formal language for services orches-
tration (called 7-Diapason), a formal services orchestration
properties definition language (called logic-Diapason) and
a toolkit for defining, verifying, deploying and executing
Web-Services-based systems. Language and toolkit consti-
tute the Diapason engineering environment.

4 Diapason: a SOA-based systems formal en-
gineering approach

Our approach aims at addressing important issues enu-
merated in section 3:

e a services orchestration formal language allowing to
define and reason on evolvable services orchestrations.
Such language has to be dedicated to SOA domain ex-
perts and has to be as simple as possible in order to be
plainly useful for SOA designer

e services orchestration checking against some prop-
erties expressed by using m-Diapason and logic-
Diapason

e services orchestration deployment and execution envi-
ronment conform to the services orchestration defini-
tion

e services orchestration dynamic runtime evolution with
formal built-in checking mechanisms

4.1 Diapason foundations

Diapason is based on our works in software architecture
domain [31, 30] particularly under the scope of architec-
ture evolution from a high level of abstraction [26, 5, 39, 6].
Software architecture encompasses software elements and
their relationships at different level of abstraction (very ab-
stract level, also called conceptual, and concrete level that
is very closed to the code).

The enthusiasm around the development of formal lan-
guages for architecture description comes from the fact that
such formalisms are suitable for automated handling and
models formal reasoning, properties checking [35, 31, 40].
These languages are used to formalize the architecture de-
scription as well as its refinement. The benefits of using
such an approach are manifold. They rank from the incre-
ment of architecture comprehension among the persons in-
volved in a project (due to the use of an unambiguous lan-
guage), to the reuse at the design phase (design elements are
reused) and to the property description and analysis (prop-
erties of the future system can be specified and the architec-
ture analyzed for validation purpose). Once the information
system architecture has been identified and formalized, the
architect may reason on it [1].

Several ADLs were proposed [20] that mainly focused on
architecture design, at a high level of abstraction. In such
context, managing the gap between abstract level and im-
plementation level remains an issue. Our approach does
not distinguish both levels (at the opposite of [35]) but pro-
poses instead to unify design (abstract) and implementa-
tion (concrete) by considering relevant services orchestra-
tion abstractions and by providing behaviour expression and

execution mechanisms. Thus, using Diapason, the SOA de-
signed is also the one that will be enacted. Diapason com-
bines strengths of formal and enactable process algebra-
based languages that support dynamic and evolvable soft-
ware architectures [26, 5, 39, 6] with services orchestration
purposes, concepts and abstractions [41, 29]. The relevance
of using process algebras in services compositions has been
already claimed and justified [11, 35, 4]. As proposed in
[38], several workflow patterns have been identified in order
to define complete and executable worklows. The Diapason
approach address some challenges identified in [17, 14, 12].

We will focus on runtime dynamic maintenance and
evolution of SOA in the following that remain an important
issue [28].

4.2 Services orchestration

Diapason

using 7-

Diapason is a w-calculus based approach allowing
formal services based systems modeling. The aim of using
a process algebra (which formally models interactions
between processes [35]) as a fundament is to provide a
mathematical model in order to guarantee the software
conformance with the end-user’s requirements. In other
words, thanks to a mathematical description, a services
based system description can be proven. Different process
algebras have been provided, for example CSP [16],
CCS [23], m-calculus [24], etc.. In our case, we have
adopted the 7w-calculus due to its main particularity: the
process mobility. This concept allows us to dynamically
evolve application’s topology by the way of processes
exchanges. In the case of services orchestration, processes
(i.e. orchestrations) is formally defined in 7w-calculus terms
of behaviours and channels. A channel aims at connecting
two behaviours and lets them interacting together. The first
order 7w-calculus has a restricted policy according to the
type of informations which can be transited over a channel.
Only simple data or channel can be transmitted but in
never way a behaviour. Transiting a channel reference
over another channel provides a way, for a process A,
which has got a channel with a process B and another
channel with a process C, to send, for example to B, its
channel with C. Finally, the processes B and C which
wre not able to communicate as far for now, can now
communicate with a common channel. This his the first
kind of mobility. In our case, Diapason is based on the high
order m-calculus which is more powerful. In addition to the
first kind of mobility, hight order m-calculus lets channels
to exchange channels as well as behaviours. This brings
a more powerful mobility. In this way, a behaviour can
send (via a channel) a behaviour to another behaviour. The
transmitted behaviour could be executed by the behaviour’s

receiver. Thus, this latter may be dynamically inherently
modified by the behaviour it just has received.

Diapason provides two different languages and a vir-
tual machine. The first language called m-Diapason lets
us formally described an SOA. Such SOA will be then
deployed as a Web Service Oriented Architecture (WSOA).
The second language called Logic-Diapason lets us express
some SOA properties. m-Diapason aims at avoiding refine-
ment steps in architecture-centric approaches [25, 39, 6].
This can be done by proposing well defined abstractions for
the services orchestration as well as a runtime environment
that supports the m-Diapason language. m-Diapason is a
powerful language:

e it allows the SOA architect to design and specify SOAs
(focusing on services orchestration);

e it provides Domain Specific Layer (see below) in order
to simplfy SOA design;

e it is formally defined, based on 7-calculus;

e it supports dynamic SOA evolution (focusing on ser-
vices orchestration dynamic evolution);

e it is enactable: it is powerful and complete enough,
supporting behaviour expression that a virtual machine
interpretes it.

Thus, there is no gap between design (abstract level) and
implementation (concrete level) as it is the same language
that covers both levels. There is no mappings rules, no need
to consistency management. The SOA specified will be the
one that will be interpreted. SOA’s execution is precisely
carried out by the Diapason virtual machine; this latter can
be used for SOA simulation and validation purpose and/or
for runtime engine that interpretes services orchestration
expressed in -Diapason (see section 4.4).

mw-Diapason is a layered language which provides three
abstraction levels.

The first layer is the expression of the high order, typed,
asynchronous and polyadic w-calculus [24]. This layer lets
us to express any process (i.e. m-calculus behaviours) in
terms of:

e 11.P: the prefixation of a process by an action where p
can be :

— z(y): a positive prefixation, which means the re-
ceiving event of the variable y on the channel x,

— Zy: a negative prefixation, which means the
sending event of the variable y on the channel x,

— 7: asilent prefixation, which means an unobserv-
able action,

P|Q: the parallelisation of two processes,

P + @Q: the indeterministic choice between two pro-
cesses,

e [z = y|P: the matching expression,

d
A(x1, ..., xn) f P: the process definition which allows
to express the recursion.

The second layer is defined on top of the first layer, us-
ing the first layer language. This second abstraction level is
the expression of the previously mentioned workflow pat-
terns: it is itself a formal process pattern definition lan-
guage. The twenty first patterns proposed in [38] are cur-
rently described in this layer; the recent twenty new ones
introduced in [33] will be expressed soon. This second layer
lets us to describe any complex process in an easiest way,
than only using the first layer (w-calculus definition layer
that is less intuitive). Using this second layer language, the
user is now able to define recurrent structures that will serve
as language extensions and will be reused in other process
pattern definitions. We have currently express some pat-
terns in order to provide a first library but, as we mentioned,
any other structure can be described using this layer. Let
us take the example of the synchronization pattern, called
synchronize. As we will see in some following examples,
a synchronize pattern allows to merge different paralleled
processes. Expressed using the first layer, its description is
the following:

pattern (synchronize (connections (_connections)),
iterate(_connections,
iterator (_connection),
behaviour (receive (_connection, _values)))).

The synchronize pattern takes a list of connections (i.e
channels in 7-calculus) as parameters. The length of the list
corresponds to the number of paralleled processes. Once
applied, this pattern will use the iterate behaviour (not de-
tailed in this paper) provided by the first layer. The iterate
behaviour takes three parameters: a list (on which one will
iterate), the iteration variable and a behaviour which will be
applied for each iteration. Thanks to the synchronize pat-
tern, the iterate pattern is used as follows: the list passed as
parameter is a list of connections; thus, the iteration vari-
able is a connection (of the list); the behaviour is defined
as a receiving action attempt on the current connection (the
iteration variable value). When the iterate pattern is termi-
nated (i.e. all of the connections involved have received any
value), the orchestration process goes on to the next steps.

The third layer is a domain specific layer. In our case
it provides the end user language for the expression of
Web Services Oriented Architectures. This third abstrac-
tion level is defined and expressed by using the two previous
layer; thus, a WSOA expressed in this third level language
is directly expressed as a m-calculus process. This layer lets
us to describe:

e the behaviour of a services orchestration,
e the orchestration inputs and outputs,

e the complex types manipulated and required in such
services orchestration,

e operations of all of the services involved in the orches-
tration.

We are now illustrating such language by expressing the vir-
tual print shop scenario described in section 2:

e We are creating a new services orchestration called
”VirtualPrintShop” with a sole parameter (as input)
of type “arrayOfByte” and with a variable named
_printJob (all variables are prefixed with an under-

score).
orchestration (
name (’VirtualPrintShop’),
parameters ([_printJob], [arrayOfBytel),

e Then, we are defining (i) the complex types needed by
all the Web services operations involved in the orches-
tration, none in this scenario, and (ii) the operations
definition. The operation definition includes the oper-
ation’s name, its Web service parent, the url, input and
output parameters.

complex_types([]),
operations ([
operation(name ('getQuantity’),
service ('PrintServer_17),
url (‘http://print-server-1/"),
requests ([]),
response (name (/' quantity’), type(’int’))),
operation(name (' sendPrintJob’),
service ('PrintServer_1’),
url (‘http://print-server-1/"),
requests ([request (name (' printJob’), type ('
arrayOfByte’)) 1),
response (_)),
operation(name (’getQuantity’),
service ('PrintServer_2'"),
url (‘http://print-server-2/"),
requests ([]),
response (name (' quantity’), type(’int’))),
operation(name ('’ sendPrintJob’),
service ('PrintServer_2'"),
url ('http://print-server-2/"),
requests ([request (name (' printJob’), type(’
arrayOfByte’)) 1),
response(_)) 1),

e The orchestration behaviour can thirdly be described.
It consists in scheduling the Web services operations
invocations by the way of process patterns (sequence,
parallel, conditional expressions).

parallel split
(PrintServer 1 - getQuantity I PrintServer 2 - getQuantity)

(PrintServer 1 - sendPrintJob)
T

PrintServer 2 - sendPrintJob

Figure 2. The virtual print shop services or-
chestration

behaviour (
parallel_split ([
sequence (
apply (
invoke (operation (’getQuantity’),
service ("PrintServer_1"),

requests([]),
response (_quantity_1))),
send (connection ('print server 1’), values([]))),
sequence (
apply (

invoke (operation (’getQuantity’),
service ('PrintServer_2'),
requests([]),
response (_quantity_2))),
send (connection ('print server 2’), values([]))),
sequence (
apply (
synchronize (connections ([connection (' print
server 1’), connection(’/print server 2')1]))
),
sequence (if_then_else(_gquantity_1 < _quantity_2,
apply (
invoke (operation (’sendPrintJob’),
service ('PrintServer_1"),

requests ([value (_printJdob))]),
response (_)),
apply (
invoke (operation(’sendPrintJob’),
service ('PrintServer_2'),
requests ([value (_printJob))]),
response(_))),
terminate))])),

e Finally, we are adding the returned parameter in terms
of type and variable name; none in this example.

return(_)).

4.3 Services orchestration dynamic evolu-
tion: orchestration changes principles
and mechanisms

Thanks to the mw-calculus mobility (first order but ex-
tended to behaviour mobility support in the high order), we
may modify the services orchestration dynamically, at run-
time, without to stop this orchestration being executed. By
construction and due to the layered languages we propose,
a services orchestration expressed using the third layer lan-
guage is semantically and formally defined as a 7w-calculus
process (in term of the first layer language). Evolving a
services orchestration is quite as the same as evolving a 7-
calculus process. We offer two different ways of performing
services orchestration dynamic evolution:

e the first one (external evolution) is decided on the ser-
vices orchestration provider in order to maintain it (i.e.
adding, removing, changing functionalities);

o the second one (internal evolution) is fired by the ser-
vices orchestration itself in order to announce a bug or
to request modification(s) when orchestration fails. In
this case, the orchestration m-Diapason definition inte-
grates the evolution code.

behaviour (
parallel_split ([
// An external evolution may be requested
receive (connection ('EVOLVE’), values ([
_evolved_behaviour]))
parallel_split ([
sequence (
apply (
invoke (operation (’getQuantity’),
service ('PrintServer_1"),
requests([]),
response (_quantity_1))),
send (connection ('print server 1’), values([])
))
sequence (
apply (
invoke (operation (’getQuantity’),
service ('PrintServer_2'"),
requests ([]),

response (_quantity_2))),
send (connection (/' print server 2’), values([])
))
sequence (
apply (
synchronize (connections ([connection (/print
server 1’), connection(’print server 2’
1)),
sequence (1f_then_else (_evolved_behaviour != NULL,
// Evolution Required
apply (_evolved_behaviour)
// NO Evolution Required
if_then_else(_quantity_1 < _quantity_2

apply (invoke (operation ('
sendPrintJob’),
service (/
PrintServer_1"),
requests ([value (
_printdJdob)) 1),
response (_)),
apply (invoke (operation (’
sendPrintJob’),
service ('
PrintServer_2'),
requests ([value (
_printJob))1),
response(_)))),
terminate))])1)),

To perform the external evolution, some changes are re-
quired in the orchestration 7w-Diapason description. These
changes are supported by some specific w-Diapason code
structures inside the behaviour (see the code previously
shown). Thus, an “evolution point” has been added. A
connection called “EVOLVE” in the code, is always avail-
able during the entire services orchestration lifecycle. This
connection allows us to dynamically pass a behaviour to
the orchestration. Once received (the _evolved_behaviour
variable is becoming not null), this behaviour can be ap-
plied within the orchestration. Such behaviour applica-
tion modifies dynamically the orchestration according to the
behaviour’s m-Diapason definition that integrates changes.
Otherwise, when no behaviour is received, the originate or-
chestration description is interpreted. Thanks to our illus-
trating scenario, the behaviour integrating changes that cor-
respond to the evolution scenario presented in section 2 is
the _evolved_behaviour variable’s value:
behaviour (

if_then_else((_quantity_ 1 != -1 , _quantity 2 != -1)

// Case 1
if_then_else(_quantity_1 < _quantity_2,
apply (invoke (operation (’sendPrintJob’),
service ('PrintServer_1"),
requests ([value (_printJob))1]),
response (_)),

apply (invoke (operation ('’ sendPrintJob’),
service ('PrintServer_2'),

requests ([value (_printJob))1),
response(_))),
if then_else((_gquantity_1 != -1 , _quantity_2 ==

_l)
// Case 2
apply (invoke (operation (’sendPrintJob’),
service ('PrintServer_17"),

requests ([value (_printJob))]),
response (_)),
if then_else((_quantity 1 == -1 , _quantity_2

1= -1)

// Case 3
apply (invoke (operation (’sendPrintJob’),
service ('PrintServer_2'),
requests ([value (_printJdob))]),
response (_)),
// Case 4
// Evolution request by the process itself
sequence (send(connection (’EVOLVE’), values
(1),
sequence (receive (connection (/EVOLVE'),
values ([_evolved_behaviour])),
apply (_evolved_behaviour)))))))

This behaviour m-Diapason definition takes into account
the status of both print servers by checking if the return
value equals to “-1” (in this case the print server is in a
“suspended” state). If none of them is suspended (see the
“Case 1”7 comment in the code above), the default orches-
tration policy remains unchanged: the print server to which
the print job will be send, will depend on the current print
server loading. Otherwise, if one of both print servers are
suspended (see the “Case 2” and “Case 3” comments in
the code above), the selected print server will be the only
one available, even if its loading threshold has been already
raised. When all of the print servers are unavailable (see
the “Case 4” comment in the code above), we illustrate the
internal evolution strategy. This latter is fired by the orches-
tration itself (see after the “Case 4” comment in the code).
When all print servers are unavailable, the orchestration -
Diapason definition does not contain the policy to apply.
We can imagine to add a new print server, to send a delay
before processing the request, etc. This policy has to be
on the fly defined in a w-Diapason behaviour and such def-
inition is sent to the connection named “EVOLVE”. Once
the behaviour has been received, it is applied (as already
explained).

4.4 Orchestration checking, deployment
and execution

When services-orchestration has been defined using -
Diapason, the Diapason virtual machine is used in order to
achieve two goals. The first one is the simulation before ex-
ecution (the validation) and the second one is the execution
itself. Simulation provide a way to compute all possible ex-
ecution traces of an orchestration expressed in m-Diapason.
Such traces are then analyzed against defined properties us-
ing the logic-Diapason language (this properties definition
language is not detailed in this paper). Generics properties
can be proved, like deadlock free, liveness properties and
safety properties [1, 35]. In the same way, logic-Diapason
lets us define and check well suited properties to prove that
a behaviour can or cannot appear during the execution of
a specific orchestration. According to these verifications,
it is up to the architect to validate and to decide whether
or not the m-Diapason expressed orchestration can be de-
ployed or not yet. In a positive case, the entire orchestra-

tion is deployed as a new Web service in order to easily be
invoked and, for example, to be reused in another orches-
tration (we can have embedded orchestrations, orchestra-
tions compositions). Finally, the new web service deployed
is executed thanks to our Diapason virtual machine. This
web services embeddeds the 7w-Diapason orchestration de-
scription and the Diapason virtual machine. The Diapason
virtual machine (7-Diapason interpreter) has been imple-
mented using XSB [34]. When services-orchestration has to
dynamically evolve, vitrual machine computes again execu-
tion traces taking into account changes; traces are then ana-
lyzed against properties definition. Using properties analy-
sis, it is up to the architect to validate and to decide whether
or not changes have to be really applied on the current ar-
chitecture. Changes may be applied on the fly, at runtime,
without to stop the current services orchestration execution.
The evolution mechanisms are explained in section 4.3.

5 Conclusion

Diapason is a novel approach for formally define, deploy,
execute and maintain services orchestrations. We are insist-
ing on the evolution mechanisms in this paper. Formal foun-
dations of the w-Diapason language can be found in [30]. 7-
Diapason supports on the fly services orchestration changes
by employing high order 7-calculus mobility concept: all or
part of an orchestration definition (called a fragment) can be
provided to the current executing orchestration on one of its
channels (in terms of m-calculus). This fragment definition
(abehaviour) is then applied within the evolvable orchestra-
tion. Thus, the services orchestration is internally modified
according to the fragment and the current execution may
be deeply modified. We are now focusing on SOA quality
attributes expressions (using the logic-Diapason language)
and we are investigating changes impacts analysis in order
to improve checking toolkit.

References

[1] 1. Alloui. Property verification and change impact analy-
sis for model evolution. In eéres journées sur I’Ingénierie
Dirigée par les Modeles (IDM’05), pages 169-174, 2005.

[2] L. F. Andrade and J. L. Fiadeiro. Composition contracts for
service interaction. Journal of Universal Computer Science,
10:375-390, 2004.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business process execution lan-
guage for web services version 1.1. Specifications, BEA
Systems, International Business Machines Corporation, Mi-
crosoft Corporation, SAP AG, Siebel Systems, May 2003.

[4] L. Bordeaux and G. Salaiin. Using process algebra for web
services: Early results and perspectives. In Technologies for

(5]

(6]

(7]

(8]
(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]
[20]

(21]

E-Services, 5th International Workshop, TES 2004, pages
54-68, SOA 2004.

S. Cimpan and H. Verjus. Challenges in architecture cen-
tred software evolution. In CHASE: Challenges in Software
Evolution, pages 1-4, Bern, Switzerland, April 2005.

S. Cimpan, H. Verjus, and I. Alloui. Dynamic architecture
based evolution of enterprise information systems. In In-
ternational Conference on Enterprise Information Systems
(ICEIS), 2007.

L. Davis, R. Gamble, M. Hepner, and M. Kelkar. Toward
formalizing service integration glue code. In IEEE Interna-
tional Conference on Services Computing, 2005.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

J. Estublier, H. Verjus, and P-Y. Cunin. Designing and
building software federations. In /st Conference on Com-
ponent Based Software Engineering (CBSE - EUROMICRO
2001), pages 121-129, Varsaw, Poland, September 2001.

J. Estublier, H. Verjus, and P.-Y. Cunin. Modelling and man-
aging software federations. In 8th European Software Engi-
neering Conference (ESEC / SIGSOFT FSE 2001), pages
299-300, Wien, Austria, September 2001.

A. Ferrara. Web services: A process algebra approach.
Technical report, June 2004.

B. Fitzerald and C. Olsson, editors. The Software and Ser-
vices Challenge. EY 7th Framework Programme, Contribu-
tion to the preparation of the Technology Pillar on “Soft-
ware, Grids, Security and Dependability”, 2006.

D. Garlan and M. Shaw. An introduction to software archi-
tecture. In V. Ambriola and G. Tortora, editors, Advances in
Software Engineering and Knowledge Engineering, pages
1-39, Singapore, 1993. World Scientific Publishing Com-
pany.

M. Hepner, M. T. Gamble, and R. F. Gamble. Elevating
interaction requirements for web service composition. In
K. Zhang, G. Spanoudakis, and G. Visaggio, editors, SEKE,
pages 697-701, 2006.

M. Hepner, R. Gamble, M. Kelkar, L. Davis, and D. Flagg.
Patterns of conflict among software components. Journal of
Systems and Software, 79(4):537-551, 2006.

C. Hoare. Communicating Sequential Processes. Prentice
Hall International Series in Computer Science, 1985.

K. Kontogiannis, G. A. Lewis, and D. B. Smith. The land-
scape of service-oriented systems: A research perspective.
In Proceedings of International Workshop on Systems De-
velopment in SOA Environments, 2000.

M. Lehman. Laws of software evolution revisited. In Eu-
ropean Workshop on Software Process Technology, pages
108-124, Berlin, 1996. Springer.

F. Leymann. Web services flow language (wsfl 1.0).
Medvidovic and Taylor. A classification and comparison
framework for software architecture description languages.
IEEE Transactions on Software Engineering, 26(1):70-93,
2000.

T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri. Challenges in software evo-
lution. In Proceedings of the International Workshop on
Principles of Software Evolution (IWPSE 2005), pages 123—
131. IEEE Computer Society, 2005.

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

T. Mens, R. Wuyts, K. D. Volder, and K. Mens. Workshop
proceedings — declarative meta programming to support
software development. ACM SIGSOFT Software Engineer-
ing Notes, 28(2), Jan. 2003.

R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

R. Milner. Communicating and Mobile Systems: The 7-
calculus. Cambridge University Press, 1999.

F. Oquendo, I. Alloui, S. Cimpan, and H. Verjus. The arch-
ware adl: Definition of the abstract syntax and formal se-
mantics. Deliverable D1.1b, ArchWare Consortium, Arch-
Ware European RTD Project IST-2001-32360, 2002.

F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux,
F. Gallo, H. Garavel, and C. Occhipinti. Archware: Archi-
tecting evolvable software. In In proceedings of the first Eu-
ropean Workshop on Software Architecture (EWSA 2004),
pages 257-271, St Andrews, UK, May 2004.

M. P. Papazoglou. Service-oriented computing: Concepts,
characteristics and directions. In I. CS, editor, WISE 03,
pages 3—12, 2003.

M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,
and B. J. Krimer. Service-oriented computing: A re-
search roadmap. In F. Cubera, B. J. Kridmer, and
M. P. Papazoglou, editors, Service Oriented Comput-
ing (SOC), number 05462 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.
http://drops.dagstuhl.de/opus/volltexte/2006/524 [date of ci-
tation: 2006-01-01].

C. Peltz. Web services orchestration: A review of emerging
technologies, tools, and standards.

F. Pourraz and H. Verjus. 7w-diapason: un langage pour la
formalisation des architectures orientées services web. In
lere Conférence francophone sur les Architectures Logi-
cielles (CAL 2006), pages 119-127, Nantes, September
2006.

F. Pourraz, H. Verjus, and F. Oquendo. An architecture-
centric approach for managing the evolution of eai services-
oriented architecture. In Eighth International Conference on
Enterprise Information Systems (ICEIS 2006), pages 234—
241, Paphos, Cyprus, May 2006.

A. P. Ravn, O. Owe, P. Giambiagi, and G. Schneider.
Language-based support for service oriented architectures:
Future directions. In Proceedings of 1st International Con-
ference on Software and Data Technologies (ICSOFT 2006),
page 6, Setdbal, Portugal, 2006.

N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst,
and N. Mulyar. Workflow control-flow patterns: A revised
view. Technical report, BPM Center Report BPM-06-22 ,
BPMcenter.org, 2006.

K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B. Cui,
E. Johnson, L. de Castro, R. F. Marques, S. Dawson, and
M. Kifer. The xsb system version 3.0 volume 1: Program-
mer’s manual. Technical report, XSB consortium, 2006.

G. Salaiin, L. Bordeaux, M. S. L. Bordeaux, and M. Schaerf.
Describing and reasoning on web services using process
algebra. In ICWS, pages 43-50. IEEE Computer Society,
2004.

(36]

(37]

(38]

(39]

[40]

(41]

(42]

M. Shaw and D. Garlan. Characteristics of higher-level lan-
guages for software architecture. Technical Report CMU-
CS-94-210, Carnegie Mellon University, School of Com-
puter Science, December 1994.

S. Thatte. Xlang - web services for business process design.
W. H. M. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(3), 2003.

H. Verjus, S. Cimpan, I. Alloui, and F. Oquendo. Gestion des
architectures évolutives dans archware. In /ére Conférence
francophone sur les Architectures Logicielles (CAL 2006),
pages 41-57, Nantes, September 2006.

H. Verjus, K. Mansouri, and M. Khireddine. Using an
architecture-centric approach for fomalizing and deploying
services oriented architecture. In International Informatics
Congress, number ISBN:975-98930-6-1, pages 129-139,
Eskisehir, Turkey, June 2005. Biltek 2005.

S. Weerawarana and C. Francisco. Business processes: Un-
derstanding bpeldws, part 1. IBM developerWorks, 2002.
T. Wendt, B. Brigl, and A. Winter. Assessing the integration
of information system components. In IHIS '05: Proceed-
ings of the first international workshop on Interoperability
of heterogeneous information systems, pages 55-62, New
York, NY, USA, 2005. ACM Press.

6. Appendix

The following 7-Diapason code stands for the web ser-
vices orchestration before the evolution.

orchestration (
name (’/VirtualPrintShop’),

parameters ([_printJob],

[arrayOfByte]),

complex_types ([]1),
operations ([

operation(name (' getQuantity’),

service ('PrintServer_17),

url (‘http://print-server-1/"),

requests([]),

response (name (/ quantity’), type(’int’))
)y

name (' sendPrintJob’),

service ('PrintServer_1"),

url (' http://print-server-1/"),

requests ([request (name (' printJob’),
type ("arrayOfByte’)) 1),

response(_)),

name (' getQuantity’),

service ("PrintServer_2"),

url (' http://print-server-2/"),

requests([]),

response (name (/ quantity’), type(’int’))
)y

name (’ sendPrintJob’),

service ('PrintServer_2'),

url (' http://print-server-2/"),

requests ([request (name (' printJob’),
type ("arrayOfByte’)) 1),

response(_)) 1),

operation (

operation (

operation (

behaviour (
parallel split ([
sequence (apply (
invoke (operation (’getQuantity’),
service ('PrintServer_17),
requests ([]),
response (_quantity_1))),
send (connection (’print server 1’),
values ([]))),

sequence (apply (
invoke (operation (’getQuantity’),
service ('PrintServer_2'),

requests ([]),
response (_quantity_2))),
send (connection (/print server 2’),
values([]))),

sequence (apply (
synchronize (connections ([
connection (’/print server 1’),
connection (‘print server 2')
1)),
sequence (if_then_else(_quantity_ 1 <
_quantity_2,
apply (
invoke (operation (’sendPrintJob
")y
service ('PrintServer_1
")
requests ([value (
_printdJdob))1),
response (_)),
apply (invoke (operation ('
sendPrintJob’),
service ('PrintServer_2
")
requests ([value (
_printdJdob))]),
response(_))),
terminate))])),
return(_)).

Listing 1. the virtual print shop services
orchestration

