
Nimrod: A Software Architecture-Centric Engineering Envi ronment
Revision 2 - Nimrod Release 1.4.3

Hervé Verjus
University of Savoie Polytech’Savoie - LISTIC Lab

B.P. 80439 - 74944 Annecy-le-Vieux Cedex - France
Phone: +33 (0)4 50 09 65 80

herve.verjus@univ-savoie.fr

Keywords: ADL, evolution, Nimrod, software architecture, formal language, object oriented programming language.

Abstract: The development of large software applications is complex.Object-oriented paradigm does not propose a
suitable paradigm. ADLs offer new artefacts at different level of abstraction. Among other, components and
connectors are commonly used artefacts for specifying large software-intensive systems. Few ADLs propose
execution mechanisms and very few address software evolution. Nimrod is a new software architecture-centric
approach with an ADL (named Nimrod ADL). Nimrod ADL aims at proposing appropriate level of abstraction
for formalizing, executing and evolving large and complex software architectures.

1 INTRODUCTION

Information systems are now based on aggregation
of existing components that have to cooperate in a
precise manner in order to satisfy user needs and
software functionalities. But as market frequently
changes, information system has also to evolve
accordingly (new needs, new functionalities, new
processes). Then, information system evolution is an
important topic and issue.
During the last decade, software engineers, prac-
titioners and researchers have been focused on
software architecture (Shaw and Garlan, 1996). Soft-
ware architecture encompasses software elements
and their relationships at different level of abstraction
(very abstract level, also called conceptual, and
concrete level that is very closed to the code).
The enthusiasm around the development of formal
languages for architecture description comes from the
fact that such formalisms are suitable for automated
handling. These languages are used to formalize the
architecture description as well as its refinement.
The benefits of using such an approach are manifold.
They rank from the increment of architecture com-
prehension among the persons involved in a project
(due to the use of an unambiguous language), to
the reuse at the design phase (design elements are
reused) and to the property description and analysis

(properties of the future system can be specified and
the architecture analyzed for validation purpose).
Once the information system has been identified and
formalized, the architect may reason on it (Alloui,
2005).
Several ADLs were proposed (Medvidovic and Tay-
lor, 2000) that mainly focus on architecture design, at
a high level of abstraction. In such context, managing
the gap between abstract level and implementation
level is an important issue. Our approach does not
propose to distinguish both level but proposes to
unify design and implementation by considering rel-
evant ADL abstractions and by providing behaviour
expression and execution mechanisms. Thus, the
architecture designed is also the one that will be
enacted.

As the evolution is often considered at the lat-
ter stages of software system development process
(i.e. implementation, execution), mostly by adopt-
ing pragmatic approaches (Demeyer et al., 2002), it
is not often studied in the earlier stages (design, mod-
elling, specification). Software evolution (Lehman,
1996) would be studied at each software development
process stage in order to notably reduce costs. The
Nimrod approach allows the architect to dynamically
evolve enterprise system architecture. As there is no
abstract and implementation level separation, the de-

signed and evolved architecture will be the executed
one.

The paper will first present in section 2 the Arch-
Ware project and relative technologies that corre-
sponds to the formal Nimrod’s foundations. In section
3, we will present the Nimrod approach for formaliz-
ing, enacting and evolving software-intensive system
architectures. The, section 4 will illustrate Nimrod
environment through an example, while section 5 will
conclude.

2 ARCHWARE ADL AS A BASIS

2.1 ArchWare architecture-centric
approach

The architecture centric development process (see fig-
ure 1) aims at providing means for defining software
intensive systems at a very abstract level. Such de-
scriptions can be then validated in order to check sys-
tems properties and are refined in a more concrete de-
scription (that allows to deploy the system in a con-
crete environment).

Figure 1: Architecture centric development process.

The ArchWare project (European IST-5 project,
number 32360 - (Consortium,)) proposes an innova-
tive architecture-centric software engineering frame-
work, i.e. architecture description and analysis
language, architectural styles, refinement models,
architecture-centric tools, and a customisable soft-
ware environment. The main concern is to guaran-
tee required quality attributes throughout evolution-
ary software development (initial development and
evolution), taking into account domain-specific archi-
tectural styles, reuse of existing components, support
for variability on software products and product-lines,
and run-time system evolution. The Cook project
studies the role of software architectures in the reengi-
neering of object-oriented applications. A software
architecture is considered as a set of typed nodes con-
nected by relations. When describing architectures,
the nodes are termed components and the relations
termed connectors. These components and connec-
tors and their compositions have specified behaviours

based onπ-calculus (Milner, 1989), and are anno-
tated with quality attributes. ArchWare proposes a
set of languages for: (1) describing the architecture
(ArchWare ADL), (2) architecture properties (Arch-
Ware AAL), (3) architecture refinement (ArchWare
ARL). ArchWare ADL offers different language lay-
ers for describing architecture, from the more generic
one (the core language), to language that are more and
more specific. Such layers can be defined by the user,
using the style mechanism. (Cimpan et al., 2005)
presents the layered construction of the language. The
core description language ArchWareπ-ADL is based
on the concept of formal composable components and
on a set of operations for manipulating these compo-
nents (Oquendo et al., 2002) and is thus more com-
plete and more expressive power than the most ADLs
(Medvidovic and Taylor, 2000; Verjus et al., 2006).
The ADL supports the concepts of behaviours and ab-
stractions of behaviours, to represent respectively run-
ning components and parametric component types.
Behaviour is described using all the basicπ-calculus
operations as well as composition and decomposition.
Communication between components is via channels
represented by connections (representing component
interfaces as well). The ArchWare ADL allows the
definition of evolvable architectures, i.e. where new
components and connectors can be incorporated and
existing ones can be removed, governed by explicit
policies. A language based on well-known compo-
nent connector, Archware C&C-ADL (Cimpan et al.,
2005), is proposed as a layer built on top of the core
language.

2.2 The ArchWare environment

The ArchWare runtime framework (Morrison et al.,
2004) includes an execution engine of architectures
based on evolutionary processes of development, a
refinement process of architecture description and
mechanisms supporting the interoperability of the en-
vironment tools and components (that can be also
COTS). Details of the ArchWare environment can
be found in (ArchWare, 2001 and Oquendo et al.,
2004). The ArchWare architecture centred tools pro-
vides supports for:

• the definition of the architecture,

• the validation of such architectures (using analysis
tools and software graphical animation tool),

• the checking of the functional and extra functional
properties of architectures,

• the refinement of architecture descriptions from
an abstract level to a concrete level,

• the code generation of the systems in various pro-
gramming languages (using explicit rules).

2.3 Architecture evolution support

One of the ArchWare environment key features is the
evolution support ability (Cimpan and Verjus, 2005).
On one hand, ArchWare ADL is the language allow-
ing to describe evolvable architectures (i.e. architec-
tures that can dynamically evolve); on the other hand,
the ArchWare environment contains an ADL virtual
machine (Morrison et al., 2004) that supports dy-
namic evolution (the architecture description code can
be modified while being interpreted). Then, an archi-
tecture description can be dynamically changed and
the runtime architecture change accordingly. When
an architecture evolves dynamically, one may check
the new architecture against properties or not (it is up
to the architect).

3 NIMROD ADL AND
ENVIRONMENT

3.1 Nimrod engineering approach and
meta-model

Our purpose is to allow software practitioners to ex-
press software architecture at different abstraction
levels, from a very abstract one to a more concrete.
Nimrod1 is a software architecture-centric engineer-
ing environment that targets software architecture for-
malization, execution, evolution and validation. At a
first glance, Nimrod provides an ADL (Architecture
Description Language) that is built with high level
software architectural concepts. Architectures ex-
pressed in Nimrod ADL are executable. Nimrod ADL
meta-model is built on top of the Nimrod root meta-
model. The architectural Nimrod root meta-model we
propose is simple and can be extended as needed. It
has two main concepts that areArchitecturalElement
andRelationship(see figure 2). As the basic idea, a
relationship links two architectural elements whatever
the relationship is. We make no assumption about
the kind of relationship the architect will need: it is
an abstract concept and could be extended as needed.
Starting from the Nimrod root meta-model, software
architect can define models (containing architectural
elements and relationships) or/and can define other
meta-models from the Nimrod root meta-model (as

1This works is partially funded by the French ANR
Cook project

consequences, other ADLs could be defined, all based
on ArchitecturalElementandRelationshipconcepts -
such Nimrod ADLs constitute what we call Nimrod
ADLs family). The conceptual and layered defini-
tion of the Nimrod ADL and ADLs family follows
a model-driven engineering approach.

ArchitecturalElement

Relationship

elem1

1,1

0..*

elem2

1,1

0..*

Figure 2: The Nimrod meta-model.

Arround this, specific architectural models can be
defined from one of an already defined meta-models,
built on top of the Nimrod root meta-model. Ar-
chitectural meta-models can be expressed as needed
(defining a vocabulary for each abstraction level the
architect needs) and architectural models can be ex-
pressed at each level of abstraction using a particular
meta-model. Any architectural model can be then val-
idated against a specific meta-model (and, by exten-
sion, against a hierarchy of meta-models). The Nim-
rod meta-model definition and validation mechanisms
are note detailed deeper in this paper.

3.2 Nimrod ADL

ADLs are often based on the component and connec-
tor artefacts (Shaw and Garlan, 1996; Allen et al.,
1997; Medvidovic and Taylor, 2000). As it has been
already wrote in several surveys ADLs consider
and cover very differently software architecture:
some ADLs only focus on structural aspects of
architecture, some other only focus on architectural
properties while some other covers structural aspects,
with architectural behaviour and properties (Oquendo
et al., 2002; Oquendo et al., 2004; Pourraz et al.,
2006; Verjus et al., 2006). But ADLs fail in their
usability: when an ADL is simple it lacks in many
points (and is often used as an academia notation
for expressing very simple architectures) and when
an ADL is taking into account several architecture
aspects (structure, behaviour, properties) it is too
complex and is no more used. We then will focus on
Nimrod ADL even if as we previously wrote, Nimrod
allows the architect to express his own architectural
meta-models and models according his needs and the

abstraction level he wants to consider.

First idea: Nimrod has to be simple.
Nimrod ADL is not complex, neither it is too simple:
Nimrod ADL is a software architecture meta-model
defined using the Nimrod root meta-model. Its con-
cepts are expressed in terms of ArchitecturalElement
and Relationship.
Nimrod ADL contains few concepts:

• Component

• Connection

• CompositionRel(ationship)

• CommunicationRel(ationship)

Such concepts are sufficient in order to support:

• Architectural structure: what are the architectural
components and how they are composed together.

• Architectural behaviour: how components com-
municate by using sending and reception of
messages.

Components can be composites (when they are
composing other sub-components) and have connec-
tions in order to communicate with other components.
Sub-components are linked to their parent by the way
of composition relationships (CompositionRel) that
also define the scope of the components. In such
approach, components are the compositional units
of a Nimrod architecture Connections are linked
together by the way of communication relationships
(CommunicationRel). Their unification is done
according (data/structure) types they support.

Second idea: Nimrod does not reinvent the wheel !
ADLs are interesting in order to describe abstractions
(Medvidovic and Taylor, 2000; Oquendo et al., 2002)
and architectural elements composition. They provide
vocabulary that ease to understand system structure
and communication among elements. But they also
lack in some points: for instance, only structural ar-
chitectures cannot be executed and ADLs that support
architectural behaviour expression (Leymonerie et al.,
2002) are not very suitable neither for supporting all
of the most programming control structures (loops,
conditional expressions, iterations, recursion) nor for
defining variables, data types, collections. Some pro-
gramming languages are more well adapted in such
situation.

Nimrod has to be used for expressing, executing
and evolving software architectures and combines
strengths of ADLs with strengths of Object-Oriented

Programming Languages (OOPL).

ADL strengths:

• Expressiveness

• Levels of abstraction

• Communication between components

• Composition (components as compositional unit)

OOPL strengths:

• Control structure

• Data types/Collections definition

• Dynamic languages (some of them, by the way of
virtual machines)

Nimrod component is the entity that combines
strengths of both fields as it is the compositional unit
and is also the computational unit (where behaviour
is expressed). Software architects define components
that interact together, each having a behaviour (in the
sense ofπ-calculus process (Milner, 1989)).

Nimrod has been implemented using Smalltalk,
with respect to theπ-calculus semantics (Nimrod is in
somewhere closed to the ArchWare ADL (Oquendo
et al., 2002; Oquendo, 2004). Smalltalk (Sharp,
1997) is a object-oriented programming language
that is extensible and dynamic. Smalltalk code is
interpreted using a virtual machine. Nimrod ADL
syntax is very simple and intuitive. One of the core
features of Nimrod is the ability to define and (re)use
behaviour. Behaviours are implemented as specific
Smalltalk processes (i.e. runnable BlockClosure
instances). Each component has a behaviour def-
inition that can be executed: each execution is a
light-weight thread (in Smalltalk sense). According
to theπ-calculus semantic, a communication among
two processes can be done when the first process is
ready for sending a message while the second process
is ready for receiving this message. Nimrod deals
with connection unifications as ArchWare ADL did
(Oquendo et al., 2002; Oquendo, 2004; Verjus et al.,
2006).

Third idea: Nimrod (not only) targets (mobile)
software architecture evolution.
Software architecture evolution is still an important
issue (Mens et al., 2003; Mens et al., 2005; Cimpan
and Verjus, 2005; Andrade and Fiadeiro, 2003; Verjus
et al., 2006). Nimrod ADL and Nimrod environment
support architecture evolution: the Nimrod ADL pro-
vides means for handling evolution while Nimrod en-
vironment integrates evolution mechanisms (that are

basically built on top of the Smalltalk VisualWorks
environment). Nimrod ADL proposes evolution prim-
itives (only manually evolution is actually supported)
on components. For example:

myClient := Component name: ’client ’.

"some code"

myClient manualEvolution

Listing 1: architectural evolution primitive

The previous piece of code (see listing 1) requests
an evolution in the context ofmyClientcomponent.
At runtime, the architecture execution will be sus-
pended and will request the user (the architect) for
an evolution within the context (in other words the
scope) of themyClientcomponent. Either the user is
deciding to resume the execution without any change,
either the user is modifying the architecture descrip-
tion (the code expressed in Nimrod ADL) and then
is resuming the architecture execution. No checking
mechanism is implemented for validating changes:
that means, user may change the architecture with
some side effects that may corrupt the architecture
integrity (such checking mechanisms will be imple-
mented in a near future). It is up to the user to change
the architecture consistently. Nimrod ADL supports
behaviour (process) mobility. For example, a compo-
nentA interacts with a componentB by the way of
connections (both components have connections that
are unified). The componentA is a composite and
it composes a sub-component (lets saysubC). Imag-
ine that thesubCcomponent has to be moved from
componentA to componentB. In order to do that, the
componentA has first to be decomposed in order to
make free (to separate) the componentsubCfrom the
componentA. Then, thesubC is sent to the compo-
nentB by the way of message passing (the message
is thesubCcomponent itself). WhensubChas been
received by the componentB, the componentB com-
posessubC component and connection unifications
can be done (if required and if connections are types
compatible). During the message passing, thesubC’s
behaviour is suspended and, then can be resumed at
any time within the componentB’s scope.

3.3 Architecture definition mechanisms

Nimrod provides mechanisms in order to express ar-
chitecture definitions. A Nimrod architecture defini-
tion is basically a architectural configuration (Shaw
and Garlan, 1994; Shaw and Garlan, 1996) also called
a style (Garlan, 1995; Shaw and Garlan, 1996; Ley-
monerie, 2004). A Nimrod architectural definition
can be then instantiated that gives an architecture
ready to be executed. One of the main advantage of

using architecture definition is that a type can be used
for creating components conform to that architectural
definition. A Nimrod architectural definition is an ar-
chitectural and a conceptual building block that can
be reused and extended as needed. As consequence,
an architecture definition can be a part in another ar-
chitecture definition. All of the complexity of a par-
ticular definition is hidden to its external world as an
architectural element may compose sub architectural
elements that are encapsulated in. We will detail ar-
chitectural definition in a future document.

3.4 Nimrod environment

The Nimrod environment is developed using
Smalltalk VisualWorks. The smalltalk virtual ma-
chine is the Nimrod ADL virtual machine as the
Nimrod is implemented in Smalltalk. Once an
information system architecture has been expressed
in Nimrod ADL, the Nimrod ADL is then interpreted
as a VisualWorks Smalltalk program. Interesting
VisualWorks features (Inspector, Debugger, etc.) are
suitable when interpreting, inspecting debugging and
evolving Nimrod architecture code.

4 A CLIENT-SERVER
ARCHITECTURE EXAMPLE
EXPRESSED AND ENACTED
USING NIMROD

4.1 Formalizing an architecture

The following piece of code is a quite simple client-
server architecture. As you will see, component is the
main artefact: the entire architecture (compArchiin
the following listing 2) is also a component that com-
poses aclient component and aserver component.
ThecompArchicomponent :

• can be reused ”as is”;

• can be reused in other architectures with some
adaptations: by addingcompArchi’s connections
in order to communicate with other components
and by modifying its behaviour (for sending
and/or receiving messages with other components
i.e. its ”external world”).

" It is a typical client-server architecture

example - During the architecture execution ,

the user is asked for an evolution"

" He may decide to continue the execution as is or

to change the architecture by modifying , for

example , the server behaviour"

| client server con1 con2 con3 con4 con5

comp2 compArchi|

"An anonymous sub -component"

comp2 := Component new.

comp2 name: #subComponent1.

comp2 behaviour: [

Transcript show: ’comp2 behaviour

execution ’; cr].

"Client component"

con1 := Connection name: ’con1 ’ type:

Integer type: String.

con2 := Connection name: ’con2 ’.

con2 types add: Boolean; add: Component;

add: Integer.

client := Component name: ’client’.

client addConnection: con1; addConnection:

con2.

client composes: comp2.

client behaviour: [

client decomposes: comp2.

con1 send: comp2.

con2 receive].

"Server component"

con4 := Connection name: ’con4 ’ type:

Integer type: String.

con5 := Connection name: ’con5 ’ type:

Boolean type: Component type: Integer.

con3 := Connection name: ’con3 ’.

con3 types add: Integer; add: String.

server := Component name: ’server’.

server addConnection: con4; addConnection:

con5.

server behaviour: [

| myComponent |

myComponent := con4 receive.

server composes: myComponent.

myComponent exec.

server unobservable.

con5 send: ’OK’].

"compArchi component: the overall

architecture"

compArchi := Component name: ’client-

server ’.

compArchi composes: client.

compArchi composes: server.

compArchi unifies: con1 with: con4.

compArchi unifies: con5 with: con2.

compArchi behaviour: [

client exec.

compArchi unobservable.

compArchi manualEvolution. "ask

for an evolution that will be

manually managed"

server exec].

compArchi exec.

Listing 2: the client-server architecture expressed using
Nimrod ADL.

Each component (client andserver) of the archi-
tecture is described separately. Then components
composition and unification are expressed within a
scope of a another component (compArchi) that con-
tains the other. The compArchi’s behaviour defines
when client and server communicate and when they
are executed. The last line of code starts the execu-
tion (exec) of the overall architecture.

4.2 Executing an architecture

As Nimrod component behaviours are implemented
as Smalltalk’s light-weight processes, they run con-
currently according to the VisualWorks light-weight
process management semantic. Note that Nimrod
ADL separates component definition and component
execution. The latter corresponds to the execution of
the component’s behaviour that is part of the compo-
nent definition. As consequence, one may change the
component definition (and for example, its behaviour)
without disturbing the execution (as a Smalltalk pro-
cess).

Figure 3: a client-server architecture using Nimrod.

The figure 3 shows the outputs results of the
client-server architecture execution.

server behaviour: [

| myComponent |

myComponent := con4 receive.

server composes: myComponent.

myComponent exec.

server unobservable.

con5 send: ’OK’].

Listing 3: reception of a mobile component.

The comp2component (see listing 2) has been
sent from theclient to theserver. When received on
theserver’s con4connection (see listing 3), theserver

composes the received component and executes its in-
ternal behaviour. Such example illustrates a mobility
simple scenario. Checking mechanisms have to be
implemented in order to support consistent compo-
nent mobility according to component internal state
management, persistency, etc.

4.3 Evolving the architecture

(Cimpan and Verjus, 2005; Verjus et al., 2006) present
a taxonomy of software architecture evolution: static
or dynamic evolution, planned or unplanned evolu-
tion. Architectural evolution can be managed auto-
matically or manually. Nimrod currently supports
static and dynamic evolution, that is either planned
or unplanned.

" some code see the listing describing the

client-server architecture "

compArchi behaviour: [

client exec.

compArchi unobservable.

compArchi manualEvolution. "ask

for an evolution that will be

manually managed"

server exec].

compArchi exec.

Listing 4: reception of a mobile component.

During the (compArchi) architecture execution,
and according to its behaviour definition (see list-
ing 4), a manual evolution is requested.

Figure 4: a manual architectural evolution is requested.

It is up to the architect to decide when the evolu-
tion has to be occurred (in the code). In the previous
piece of code (see listing 2), an evolution is requested
just before theservercomponent execution, while the
client is currently being executed. The figure 4 shows
that the architecture execution is suspended until the
architect will resume it.

Figure 5: once the changes have been expressed using Nim-
rod ADL, they can be applied on the current runnable archi-
tecture.

The architect may do some changes. In the pre-
sented example, he is changing theserver’s behaviour
(by using the VisualkWorks’s Inspector tool and by
directly modifying the behaviour code). Then, the
architect resumes the architecture execution that is
executing theserver’s behaviour that just has been
changed. As you will see in the figure 5, the execu-
tion outputs are not the same as the previous execution
(without any change see the figure 3), and take into
account the recent changes. The architecture has been
dynamically (on the fly) changed.

Figure 6: architectural elements inspection.

When the architecture is suspended, the architect
may inspect architectural elements (components, con-
nections, etc.). The figure 6 shows that the current
component whose name is ”client-server” (that is de-
clared ascompArchiin the listing 2), has its executed
behaviour implemented as a Smalltalk suspended pro-
cess.

5 CONCLUSION AND ONGOING
WORK

Architecture evolution support is an important is-
sue (Andrade and Fiadeiro, 2003). Current researches
on this area are concentrated either on low level of
abstraction (implementation level), either on a very
high level (that is traditionnaly called conceptual
level). Firstly, we claim that the ADL has to support
evolution: architecture evolution would have to be
expressed using the language itself. Few ADLs have
such feature (Darwin (Magee et al., 1995),π-Space
(Chaudet and Oquendo, 2000), Piccola (Nierstrasz
and Achermann, 2000), ArchWare (Verjus et al.,
2006; Cı̂mpan et al., 2007; Oquendo et al., 2004)),
while most of them are based onπ-calculus. Sec-
ondly, the ADL has to be runnable and has to support
on the fly changes mechanisms. This latter point is
very important. Most research activities focusing on
architecture evolution are statically onces because
they are not based on an adequate ADL: changes on
architectures are made either on abstract architecture
(Egyed and Medvidovic, 2001), either directly in
the code (see (Pollet et al., 2007) for a good survey
on research leaded in this topic). As consequences,
research works address consistency issue between
abstract and implementation levels (Oreizy et al.,
1998; Garlan et al., 2003; Carriere et al., 1999;
Erdogmus, 1998; Aldrich et al., 2002; Pinzger et al.,
2004; Pinzger et al., 2005; Rank, 2005; Roshandel
et al., 2004; Nistor et al., 2005). Nimrod is a first
step towards a simple, runnable ADL that supports
evolvable architectures. Nimrod combines ADLs
and OOPL strengths in order to be usable as a new
”way of programming” software-intensive system
architectures. Using Nimrod architects express
runnable architectures by composing components.
Evolving such architectures is no more a big deal
while the Nimrod integrates evolution mechanisms
and tools. The Nimrod ADL artefacts (components,
connections) are high level abstractions, commonly
used in ADLs while the component’s behaviour is ex-
pressed as sequence of actions (as in theπ-calculus).

We will aim at implementing Nimrod checking mech-
anisms:

• according toπ-calculus semantics;

• when evolving an architecture, the changes
would not have to be applied (”do it !” in the
figure 5) if they violate architectural constraints
and properties.

Another issue is to integrate architectural changes

impacts analysis. Nimrod only supports manual evo-
lution management: we will investigate automated
evolution management that would consist in automat-
ically searching for an appropriate evolution strategy
and corresponding changes among several. Similar
mechanisms (i.e. components that would manage
evolution) such as those described in (Verjus et al.,
2006) could be good candidates.

REFERENCES

Aldrich, J., Chambers, C., and Notkin, D. (2002). Architec-
tural reasoning in ArchJava. InProceedings ECOOP
2002, volume 2374 ofLNCS, pages 334–367, Malaga,
Spain. Springer Verlag.

Allen, R., Douence, R., and Garlan, D. (1997). Specifying
dynamism in software architectures. In Leavens, G. T.
and Sitaraman, M., editors,Proceedings of ESEC ’97
Workshop on Foundations of Component-Based Sys-
tems, pages 11–22, Zurich.

Alloui, I. (2005). Property verification and change impact
analysis for model evolution. In1ères journées sur
l’Ingénierie Dirigée par les Modèles (IDM’05), pages
169–174.

Andrade, L. and Fiadeiro, J. (2003). Architecture based
evolution of software systems. In Springer-Verlag, ed-
itor, Formal Methods for Software Architecture, vol-
ume 2804 of LNCS, pages 148–181.

Carriere, S., Woods, S., and Kazman, R. (1999). Software
architectural transformation. In Society, I. C., editor,
Proc. 6th Working Conference on Reverse Engineer-
ing.

Chaudet, C. and Oquendo, F. (2000).π-space: A formal
architecture description language based on process al-
gebra for evolving software systems. InProceedings
of 15th IEEE International Conference on Automated
Software Engineering (ASE’00), Grenoble, France.

Cimpan, S., Leymonerie, F., and Oquendo, F. (2005). Han-
dling dynamic behaviour in software architectures. In
European Workshop on Software Architectures, Pisa,
Italy.

Cimpan, S. and Verjus, H. (2005). Challenges in ar-
chitecture centred software evolution. InCHASE:
Challenges in Software Evolution, pages 1–4, Bern,
Switzerland.

Cı̂mpan, S., Verjus, H., and Alloui, I. (2007). Dynamic
architecture based evolution of enterprise information
systems. InInternational Conference on Enterprise
Information Systems (ICEIS).

Consortium, A. Archware - architecting evolvable software
- ist european project 2001-32360.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2002).
Object-Oriented Reengineering Patterns. Morgan
Kaufmann.

Egyed, A. and Medvidovic, N. (2001). Consistent architec-
tural refinement and evolution using the unified mod-
eling language. InProceedings of the 1st Workshop

on Describing Software Architecture with UML, pages
83–87, Toronto, Canada.

Erdogmus, H. (1998). Representing architectural evolution.
In Proceedings of CASCON ’98, pages 159–177, On-
tario, Canada.

Garlan, D. (1995). What is style? InProc. First Interna-
tional Workshop Software Architecture.

Garlan, D., Cheng, S., and Schmerl, B. (2003). Increasing
system dependability through architecture-based self-
repair. InArchitecting Dependable Systems. Springer-
Verlag.

Lehman, M. (1996). Laws of software evolution revisited.
In European Workshop on Software Process Technol-
ogy, pages 108–124, Berlin. Springer.

Leymonerie, F. (2004).ASL language et outils pour les
styles architecturaux. Contribution à la description
d’architectures dynamiques. PhD thesis, University
of Savoie, Annecy.

Leymonerie, F., Cimpan, S., and Oquendo, F. (2002).
Etat de l’art sur les styles architecturaux: classifi-
cation et comparaison des langages de description
d’architectures logicielles.Génie Logiciel, 62.

Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. (1995).
Specifying distributed software architectures. InPro-
ceedings ESEC ’95, volume 989 ofLNCS, pages 137–
153. Springer-Verlag.

Medvidovic and Taylor (2000). A classification and com-
parison framework for software architecture descrip-
tion languages.IEEE Transactions on Software Engi-
neering, 26(1):70–93.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S.,
Hirschfeld, R., and Jazayeri, M. (2005). Challenges
in software evolution. InProceedings of the Interna-
tional Workshop on Principles of Software Evolution
(IWPSE 2005), pages 123–131. IEEE Computer Soci-
ety.

Mens, T., Wuyts, R., Volder, K. D., and Mens, K. (2003).
Workshop proceedings — declarative meta program-
ming to support software development.ACM SIG-
SOFT Software Engineering Notes, 28(2).

Milner, R. (1989). Communication and Concurrency.
Prentice-Hall.

Morrison, R., Balasubramaniam, D., Kirby, N., Mickan, K.,
Oquendo, F., Cimpan, C., Warboys, B., Snowdon, R.,
and Greenwood, M. (2004). Support for evolving soft-
ware architectures in the archware adl. In4th Working
IEEE/IFIP Int. Conf. on Software Architecture, pages
69–78, Oslo, Norway.

Nierstrasz, O. and Achermann, F. (2000). Supporting
Compositional Styles for Software Evolution. In
Proceedings International Symposium on Principles
of Software Evolution (ISPSE 2000), pages 11–19,
Kanazawa, Japan. IEEE.

Nistor, E., Erenkrantz, J., Hendrickson, S., and d. Hoek, A.
V. D. H. (2005). Archevol: Versioning architectural-
implementation relationships. In12th International
Workshop on Software Configuration Management
(SCM05), Lisbon, Portugal.

Oquendo, F. (2004). π-adl: an architecture description
language based on the higher-order typed π-
calculus for specifying dynamic and mobile software
architectures.SIGSOFT Softw. Eng. Notes, 29(3):1–
14.

Oquendo, F., Alloui, I., Cimpan, S., and Verjus, H. (2002).
The archware adl: Definition of the abstract syntax
and formal semantics. Deliverable D1.1b, ArchWare
Consortium, ArchWare European RTD Project IST-
2001-32360.

Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R.,
Gallo, F., Garavel, H., and Occhipinti, C. (2004).
Archware: Architecting evolvable software. InIn pro-
ceedings of the first European Workshop on Software
Architecture (EWSA 2004), pages 257–271, St An-
drews, UK.

Oreizy, P., Medvidovic, N., and Taylor, R. N. (1998).
Architecture-based runtime software evolution. In
ICSE ’98: Proceedings of the 20th international
conference on Software engineering, pages 177–186,
Washington, DC, USA. IEEE Computer Society.

Pinzger, M., Gall, H., and Fischer, M. (2005). Towards
an integrated view on architecture and its evolution.
Electronic Notes in Theoretical Computer Science,
127(3):183–196.

Pinzger, M., Gall, H., Girard, J.-F., Knodel, J., Riva, C.,
Pasman, W., Broerse, C., and Wijnstra, J. G. (2004).
Architecture recovery for product families. InPro-
ceedings of the 5th International Workshop on Prod-
uct Family Engineering (PFE-5), LNCS 3014, pages
332–351. Springer-Verlag.

Pollet, D., Ducasse, S., Poyet, L., Alloui, I., Cı̂mpan, S.,and
Verjus, H. (2007). Towards a process-oriented soft-
ware architecture reconstruction taxonomy. InCon-
ference on Software Maintenance and Reengineering
(CSMR), Best Paper Award.

Pourraz, F., Verjus, H., and Oquendo, F. (2006). An
architecture-centric approach for managing the evo-
lution of eai services-oriented architecture. In
Eighth International Conference on Enterprise Infor-
mation Systems (ICEIS 2006), pages 234–241, Pa-
phos, Cyprus.

Rank, S. (2005). Architectural reflection for software evo-
lution. In Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE 2005), held at
ECOOP, pages 51–58, Glasgow, UK.

Roshandel, R., Hoek, A. V. D., Mikic-Rakic, M., and Med-
vidovic, N. (2004). Mae: a system model and envi-
ronment for managing architectural evolution.ACM
Trans. Softw. Eng. Methodol., 13(2):240–276.

Sharp, A. (1997).Smalltalk by Example. McGraw-Hill.

Shaw, M. and Garlan, D. (1994). Characteristics of higher-
level languages for software architecture. Technical
Report CMU-CS-94-210, Carnegie Mellon Univer-
sity, School of Computer Science.

Shaw, M. and Garlan, D. (1996).Software Architecture:
Perspectives on an Emerging Discipline. Prentice-
Hall.

Verjus, H., Cimpan, S., Alloui, I., and Oquendo, F. (2006).
Gestion des architectures évolutives dans archware.
In 1ère Conférence francophone sur les Architectures
Logicielles (CAL 2006), pages 41–57, Nantes.

