
π-Diapason: A π-calculus Based Formal
Language For Expressing Evolvable Web

Services Orchestrations

Frédéric Pourraz and Hervé Verjus
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Abstract. This paper presents π-Diapason, a π-calculus-based formal
and layered language for expressing complex Web Services orchestrations
that are able to dynamically evolve. Once formalized, one can reason on
the Web Services orchestration. Then, it is deployed, executed and can
be dynamically changed at runtime. Services orchestration verification,
execution and evolution are supported by some tools (π-Diapason virtual
machine, π-Diapason services orchestration execution traces checker).

1 Introduction

Service-Oriented Architectures (SOA) is a recent paradigm for building large
scale software applications from distributed services. One of the main interest of
SOA [1–3] is basically the underlying ability of such architecture to inherently
being evolvable; because the underlying idea of SOA is that the services (that
can be defined as software functionality packages accessible through a networked
infrastructure) are loosely coupled and the SOA could be adapted to its environ-
ment. As services are supposed to be autonomous, self-contained, one have no
control nor authority over them. P2P architectures illustrate such idea when, for
example, a service is no more available and could be replaced dynamically by an-
other. Thus, SOAs introduce new engineering issues [1, 4–6] and SOA evolution
is becoming very challenging [1, 6]. In that perspective, recent works focus on
designing evolvable and quality aware systems from a high level of abstraction in
order to reason about it and to control it: software architecture field copes with
such objectives [7–12]. Thus, important engineering questions are addressed to
SOAs architects: what about the quality of SOAs ? How can we ensure that SOA
fit expectations ? How are SOAs able to be dynamically adapted ? How can we
ensure that the executed SOA is consistent with the design ?
We present in this paper our formal language called π-Diapason that lets the user
to formally express web services orchestrations that are able to be dynamically
adapted in a formal controled manner.

The section 2 of this paper will present works and challenges related to SOA
engineering. Section 3 will present our formal language, called π-Diapason, for
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designing evolvable Web-service-based architectures. Section 4 will address ser-
vices orchestration checking and deployment using our approach and section 5
will then conclude.

2 Related work and challenges

In [2] the authors present challenges in SOA engineering domain that encom-
pass requirements, architecture, design, implementation, testing, deployment
and reengineering. The authors mentionned, amongst other, the following is-
sues:

– thanks to the architecture: services-oriented frameworks, platform-independent
architectural styles, non-functional-attribute-driven design;

– thanks to the design: design pattern, platform-specific models, personaliza-
tion and adaptation, services choreography and orchestration;

– thanks to the implementation: model-driven approaches, template-based code
generation, language extensions to support service-oriented development,
transformation frameworks;

– thanks to the testing: architecture-level: proof-of-concept, transaction man-
agement, quality of service, load/stress testing, global-level dynamic: com-
position, orchestration, versioning, monitoring, and regression testing;

– thanks to maintenance and reengineering: evolution patterns, dependency
and impact analysis, infrastructures for change control and management,
tools, techniques and environments to support maintenance activities, mul-
tilanguage system analysis and maintenance, reengineering processes, tools
for the verification and validation of compliance with constraints, round-trip
engineering.

Related to this, there are many additional opportunities that our approach will
deal with:

– Languages for services orchestration and composition
– Reasoning about services compositions
– Integration by non-experts
– Orchestrations (fragments) reuse
– Services orchestration maintenance and evolution support

Works arround services composition are manifold. They range from services
choreography, to services orchestration [13]. Basically, services choreography fo-
cuses on messages between actors (even they are not really identified) involved
in business processes. Services choreography brings an abstract view of process
interactions but does not aim at focusing on process execution. Services orches-
tration addresses business process through services invocations scheduling and
organisation. Services orchestration aims at defining executable processes by pro-
viding orchestration languages (amongst the most well known BPEL4WS [14],
XLANG [15], WSFL [16], BPML, etc. [13]) that are executable languages (by the
way of workflow engines). BPEL4WS allows to define abstract business processes
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and executable processes. But such languages lack in services orchestration rea-
soning, reuse, dynamic maintenance and evolution [6, 17]: i.e. business processes
expressed using these languages cannot be formally checked, nor they can evolve
dynamically. When services are modified, the orchestration has to be manually
modified accordingly and process execution cannot be dynamically changed. [3]
presents a framework for the use of process algebra in web services compositions.
The authors distinguish two layers: an abstract layer for which process algebras
can be used and a concrete layer using classical services description, orchestra-
tion and choreography languages (WSDL, BPEL4WS, WS-CDL). Services are
implemented with programming languages (Java, C#,...). The abstract layer al-
lows the designer to reson on services compositions before translating such formal
compositions to semi-formal ones. The formal mapping between the two layers
deals with the semantic consistency between the layers as the executable layer
is less powerful than the abstract layer. As consequence, we cannot guarantee
that the implemented services orchestration will be totally compliant with the
designed one. As the authors promote services orchestration languages such as
BPEL4WS, there is no novel approach for services orchestration deployment and
enactment. We will now present the π-Diapason language we offer for expressing
services orchestration that are inherently able to dynamically evolve.

3 π-Diapason: a formal language for expressing evolvable
web services orchestrations

3.1 π-Diapason formal foundations

Diapason [18] is a π-calculus based approach allowing formal services based
systems modeling, deployment and execution. The aim of using a process algebra
(which formally models interactions between processes [3]) as a fundament is to
provide a mathematical model in order to guarantee the software conformance
with the end-user’s requirements. In other words, thanks to a mathematical
description, a services based system description can be proven. Different process
algebras have been provided, for example CSP [19], CCS [20], π-calculus [21], etc.
In our case, we have adopted the π-calculus due to its main feature: the process
mobility. This concept allows us to dynamically evolve application’s topology by
the way of processes exchanges. In the case of services orchestration, processes
(i.e. orchestrations) is formally defined in π-calculus terms of behaviours and
channels. A channel aims at connecting two behaviours and lets them interacting
together. The first order π-calculus has a restricted policy according to the type
of informations which can be transited over a channel. Only simple data or
channel can be transmitted but in never way a behaviour. Transiting a channel
reference over another channel provides a way, for a process A, which has got
a channel with a process B and another channel with a process C, to send, for
example to B, its channel with C. Finally, the processes B and C which are
not able to communicate as far for now, can now communicate with a common
channel. This his the first kind of mobility. In our case, π-Diapason is based on
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the high order π-calculus which is more powerful. In addition to the first kind
of mobility, hight order π-calculus let channels to exchange channels as well
as behaviours. This brings a more powerful mobility. In this way, a behaviour
can send (via a channel) a behaviour to another behaviour. The transmitted
behaviour could be executed by the behaviour’s receiver. Thus, this latter may
be dynamically inherently modified by the behaviour it just has received.

π-Diapason aims at proposing well defined formal abstractions for express-
ing services orchestration that can be then executed (because π-Diapason is an
executable formal language); π-Diapason:

– allows the SOA architect to design and specify SOAs (focusing on services
orchestration);

– provides Domain Specific Layer (see below) in order to simplify SOA design;
– is formally defined, based on π-calculus;
– supports dynamic SOA evolution (focusing on services orchestration dy-

namic evolution);
– it is executable: it is powerful and expressive enough that a virtual machine

can interprete it.

Thus, there is no gap between design (abstract level) and implementation
(concrete level) as it is the same language that covers both levels. There is no
mappings rules, no need to consistency management. The SOA specified will be
the one that will be interpreted. SOA’s execution is precisely carried out by the
π-Diapason virtual machine; this latter can be used for SOA simulation and vali-
dation purpose and/or for runtime engine that interpretes services orchestration
expressed in π-Diapason (see section 4).

3.2 π-calculus basis for the π-Diapason language

Thanks to the π-calculus [20], some operators are required (we defined naming
conventions: upper case letters stand for process while lower case letters stand
for variables):

– µ.P: the prefix of a process by an action where µ can be :
• x(y): a positive prefix, which means the receiving event of the variable

y on the channel x,
• x̄y: a negative prefix, which means the sending event of the variable y

on the channel x,
• τ : a silent prefix, which means an unobservable action,

– P |Q: the parallelisation of two processes,
– P +Q: the indeterministic choice between two processes,
– [x = y]P : the matching expression,

– A(x1, ..., xn)
def
= P: the process definition which allows to express the recur-

sion.
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Starting for the 0 process (i.e. the inactive process), the definition of a P
process can be expressed as follows:

P
def
= 0 | x(y).P | x̄y.P | τ.P | P1|P2 | P1 + P2 | [x = y]P | A (x1, ..., xn)

π-Diapason has been designed as a layered language which provides three
abstraction levels. The π-Diapason layers syntax and semantics (transition rules
and type definition rules are given in the appendix).

3.3 The first layer

The π-Diapason first layer is the expression of the high order, typed, asyn-
chronous and polyadic π-calculus [21]:

– polyadic for sending simultaneously several values on a same channel (i.e. in
order to invoke a service with some parameters),

– asynchonous; thus a process that sends a value on a channel is not blocked
event if the receiver is not ready to proceed the receiving action,

– typed for allowing typed value declaration. Thus, type checking is then pos-
sible,

– high order for allowing to transmit connections and processes on channels
that stands for mobility (we will employ π-calculus mobility as a conceptual
means for evolving services orchestration).

The π-Diapason virtual machine supports this first layer. The π-Diapason
first layer non-symbolic syntax is a XSB [22] Prolog-based syntax. Given the
naming conventions: a process’s name begins with a lower case letter while vari-
able’s name begins either with an underscore character “ ”, either with a upper
case letter, this first layer syntax definition is as follows:

0 ≡ terminate
P ≡ apply(p)

P.Q ≡ sequence(apply(p), apply(q))
x(y) ≡ receive(X, Y)
x̄y ≡ send(X, Y)
τ ≡ unobservable

P | Q ≡ parallel split([apply(p), apply(q)])
P + Q ≡ deferedChoice([apply(p), apply(q)])

[x = y] P ≡ if then(C, apply(p))
or if then else(C, apply(p), apply(q))

See the appendix for the π-Diapason layers’ definition and implementation.

3.4 Process definition and application:

a process can be defined and applied in two different ways.
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– the first one consists in creating an anonymous process that is applied only
once (and cannot be reused). Such process is called as behaviour and is
declared and applied as follows:

apply(behaviour(...)).

– the second way consists in first defining a named process that can be possibly
applied several times in a given services orchestration. Such process is called
as process and its definition and application are as follows:

process(process_name(_parameter1, _parameter2, ...), behaviour(...))
...
apply(process_name(_value1, _value2, ...))

3.5 Inter-process communication channels

can be defined as connections. A connection is named. We may send a value on
a connection connection name.

send(connection(’connection_name’), _value)

3.6 Values and variables.

Values are literals (integers, floats, booleans, strings). Variables are named (with
a first character that is either the underscore character, either a upper case
letter). A variable’s value can be either a literal, either a connection or a process.

3.7 Collections.

A collection is either a list, either an array. A list is sorted collection that contains
values that may of different types while an array only contains same type values.

list([_value1, _value2, ...])
array([_value1,_value2, ...])

We introduced an iterate operator for iterating over a collection. Iteration
consists in executing a behaviour at each collection’s element.

iterate(_collection, _iterator, _behaviour)

3.8 New types definition

can be added in the language. We do not detail this feature in this paper.
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3.9 The second layer

The π-Diapason second layer is defined on top of the first layer, using the first
layer language. This second abstraction level is the expression of the previously
mentioned workflow patterns: it is itself a formal process pattern definition lan-
guage. The twenty first patterns proposed in [23] are currently described in this
layer; the recent twenty new ones introduced in [24] will be expressed soon. This
second layer:
– lets us to describe any complex process in an easiest way and at a higher

level of abstraction, than only using the first layer (π-calculus definition layer
that is less intuitive);

– allows the user to define recurrent structures that will serve as language
extensions and will be reused in other process pattern definitions. We have
currently express some patterns in order to provide a first library but, as we
mentioned, any other structure can be described using this layer;

– contains the formal definition of the services orchestration paterns. Thus,
future verifications could be performed;

– is generic enough to be domain independant and can be served as basis for
domain-specific languages defined upon it.

Let us take the example of the synchronization pattern, called synchronize.
This pattern allows to merge different parallelized processes. Expressed using
the first layer, its description is the following:
pattern(synchronize(connections(_connections)),
iterate( _connections,

iterator(_connection),
behaviour(receive(_connection, _values)))).

The synchronize pattern takes a list of connections (i.e channels in π-calculus)
as parameters. The length of the list corresponds to the number of paralleled
processes. Once applied, this pattern will use the iterate behaviour provided by
the first layer. The iterate behaviour takes three parameters: a list (on which
one will iterate), the iteration variable and a behaviour which will be applied for
each iteration. Thanks to the synchronize pattern, the iterate pattern is used as
follows: the list passed as parameter is a list of connections; thus, the iteration
variable is a connection (of the list); the behaviour is defined as a receiving ac-
tion attempt on the current connection (the iteration variable value). When the
iterate pattern is terminated (i.e. all of the connections involved have received
any value), the orchestration process goes on to the next steps. Thus, this layer
contributes significantly to the services orchestration by using formal orchestra-
tion patterns. π-Diapason second layer constitutes a novel and extensible services
orchestration formal language and is a serious alternative to well known but less
expressive and less extensible orchestration languages (BPEL4WS, WSFL, etc.).

3.10 The third layer: a formal language for expressing evolvable
web services orchestrations

This layer is a domain specific layer. In our case it provides the end user language
for the expression of web services orchestration. This third abstraction level
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is defined and expressed by using the two previous layer; thus, a Web Service
Oriented Architecture expressed in this third level language is directly expressed
as a π-calculus process. This layer lets us to describe:

– the behaviour of a services orchestration,
– the orchestration inputs and outputs,
– the complex types manipulated and required in such services orchestration,
– operations of all of the services involved in the orchestration.

In order to define web services orchestrations we have to express web services
operations involved in the orchestration. We do not care how services are imple-
mented but we just need operations provided. Thus web service operations are
formalized using WSDL files that contain all required information, among them:

– the operation’s name;
– the operation’s parent web service;
– the operation’s invocation URL;
– the operation’s parameters;
– the operation’s return value (optional).

Operation concept is defined in terms of types of the π-Diapason second
layer.

type(operation, list([operation_name, service, url, requests, response])).
...
type(operation_name, string).
type(service, string).
type(url, string).
...

We do not explain deeper such operation complete definition (request and
response are not detailed in this paper).

Thanks to the communication protocol (SOAP) employed in WSOA, com-
plex types have to be formalized. Each complex type formalization includes the
complex type name, its namespace and its constituents (other types). This for-
malization is not presented here.

3.11 Invoking operation

is formalized as a π-calculus process called invoke. Such invocation process takes
some parameters: the operation name, a collection containing the operation ar-
guments and a return value. In term of π-Diapason first layer concepts, such
definition consists in sending a message on a connection named request and
then, waiting for a message on a connection named response. The definition of
the invocation process is given as follow:

process(invoke(operation(_operation), requests_values(_requests),
response_value(_response)),

sequence(send(connection(’request’), operation_value(list([operation(_operation
), requests_values(_requests)]))),

receive(connection(’response’), response_value(_response)))).
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3.12 Web services orchestration

is then defined as a π-Diapason second layer process. Such process takes four
parameters: the name of the orchestration (remember that a named process
can be reused as necessary), the orchestration parameters (i.e. a collection), a
return value and a behaviour that orchestrates some invocation processes. The
orchestration process behaviour consists in applying the behaviour passed as
parameter. Such definition implies new types definition (i.e. parameters, return,
etc.) that are not introduced in the paper.

type(orchestration_name, string).
process(orchestration(orchestration_name(_name), parameters(_parameters),

return(_return), behaviour(_behaviour)),
apply(behaviour(_behaviour))).

3.13 Services orchestration dynamic evolution: orchestration
changes expression and mechanisms

Thanks to the π-calculus mobility (first order but extended to behaviour mo-
bility support in the high order), we may modify the services orchestration dy-
namically, at runtime, without to stop this orchestration being executed. By
construction and due to the layered languages we propose, a services orches-
tration expressed using the third layer language is semantically and formally
defined as a π-calculus process (in term of the first layer language). Evolving a
services orchestration is quite as the same as evolving a π-calculus process [18].

We offer two different ways of performing services orchestration dynamic
evolution:

– the first one (external evolution) is decided on the services orchestration
provider in order to maintain it (i.e. adding, removing, changing functional-
ities);

– the second one (internal evolution) is fired by the services orchestration itself
in order to announce a bug or to request modification(s) when orchestration
fails. In this case, the orchestration π-Diapason definition integrates the evo-
lution code and the services orchestration can be considered at some extends,
as a self-adaptable services orchestration.

We are now explaining how a services orchestration formally defined using π-
Diapason third layer is able to evolve dynamically (at runtime). The orchestra-
tion behaviour (see the orchestration in the left part of the Figure 1) consists in
scheduling the Web services operations invocations by the way of process pat-
terns (sequence, parallel, conditional expressions) defined in the second layer of
the π-Diapason language. In order to perform the external evolution, an “evo-
lution point” has been defined. A connection called “EVOLVE”, defined in the
services orchestration π-Diapason code, is a connection for firing and receiving
services orchestration changes. This connection allows us to dynamically pass
a behaviour to the orchestration (i.e. conform to process mobility [21]). Once
received (the evolved behaviour variable is becoming not null), this changed
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Fig. 1. The services orchestration evolution process

or new behaviour (see the orchestration in the right part of the Figure 1) can
be applied within the orchestration (the receiver). Such behaviour application
modifies dynamically the orchestration according to the behaviour’s π-Diapason
definition that integrates changes. Otherwise, when no behaviour is received, the
orchestration process goes on as it was planned, without modification. The fol-
lowing piece of code is a services orchestration example containing an “EVOLVE”
connection and for applying this new (modified) behaviour.

...
behaviour(
parallel_split([

// An external evolution may be requested
receive(connection(’EVOLVE’), values([_evolved_behaviour]))
// some invocations of second layer patterns
...
sequence(if_then_else(_evolved_behaviour != NULL,

// Evolution Required
apply(_evolved_behaviour)
// NO Evolution Required
if_then_else( // a test,

// the orchestration goes on without modification
...

terminate))])])),
...

The π-Diapason expression of the behaviour that is containing modifications
(for example new orchestration process, adding, removing services and/or oper-
ations) is dynamically received and applied (see the bottom part of the figure
1). It is up to the user to express and on the fly provide to the π-Diapason
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virtual machine, the definition of such behaviour. This evolution mechanism at
π-Diapason code level deals with unpredicatble situations that may occur at
runtime, without having to suspend or to stop the execution.

4 Services orchestration checking, deployment and
execution

When services-orchestration has been formalized using π-Diapason, the π-Diapason
virtual machine is used in order to achieve two goals. The first one is the services
orchestration simulation before its execution (the validation) and the second one
is the execution itself. Simulation provides a way to compute all possible exe-
cution traces of an orchestration expressed in π-Diapason. Such traces are then
analyzed against defined properties using the Diapason* language (this proper-
ties definition language is not presented in this paper). Generic properties can
be proved, like deadlock free, liveness properties and safety properties [3, 25, 18].
According to these verifications, it is up to the architect to validate and to decide
whether or not the π-Diapason formalized orchestration can be deployed or not.
In a positive case, the entire orchestration is deployed as a new Web service in
order to easily be invoked and, for example, to be reused in another orchestra-
tion (i.e. orchestrations compositions). Finally, the new web service deployed is
executed thanks to the π-Diapason code. The deployed web service integrates
the π-Diapason virtual machine that has been implemented using XSB Prolog
[22]. When services orchestration has to dynamically evolve, the virtual machine
computes again execution traces taking into account changes; traces are then an-
alyzed against properties definition and the changes may (or not) be applied on
the fly, at runtime, without to stop the current services orchestration execution.

5 Conclusion

π-Diapason is a formal and layered language for expressing processes at the
second layer level by the way of patterns; the third layer offers a high level
language that allows the user to formalize evolvable web services orchestration
without being in touch with π-calculus. A services orchestration expressed using
π-Diapason can be then validated, executed, deployed and evolved dynamically.
Diapason is an environment that supports π-Diapason and provides some tools
(virtual machine, checker, graphical animator). π-Diapason supports business
services orchestration evolution that is required and motivated in plethora of
papers [18, 17, 3, 25]: all or part of an orchestration definition (called a services
orchestration fragment) can be dynamically provided to the current executing
orchestration on one of its channels (in terms of π-calculus). This fragment def-
inition (a behaviour) is then applied within the evolvable orchestration. Thus,
the services orchestration is internally modified according to the fragment and
the current execution may be deeply and consistently modified.
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A Appendix A. BNF (Backus-Naur Form) of the
π-Diapason first layer

description ::= < declaration >+
declaration ::= type declaration |

behaviour declaration

type declaration ::= type( type name , type ).

type ::= ANY |
string |
integer |
boolean |
array |
list

array ::= array(collection name)
list ::= list([collection name < , collection name >* ])

collection type ::= type name |
connection |
behaviour

behaviour declaration ::= process( behaviour name < parameters >? , transition).

parameters ::= ( parameter < , parameter >* )
parameter ::= value |

connection |
behaviour

value ::= type name(variable)
connection ::= connection(variable)
behaviour ::= behaviour(variable)

action ::= value(value name, parameter literal) |
instanciate(process) |
sequence(action, action) |
parallel split([ action, action < , action >* ]) |
if then(condition, action) |
if then else(condition, action, action) |
defered choice([ action, action < , action >* ]) |
send(connection literal) |
send(connection literal, parameter literal) |
receive(connection literal) |
receive(connection literal, parameter literal) |
iterate(collection literal, action) |
iterate(collection literal, parameter, action) |
unobservable |
terminate

process ::= behaviour literal |
behaviour name < parameters literal >?
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parameters literal ::= ( parameter literal < , parameter literal >* )
parameter literal ::= value literal |

connection literal |
behaviour literal

value literal ::= value |
type name(value(value name)) |
type name(string) |
type name(integer) |
type name(boolean) |
collection literal

collection literal ::= value |
type name(value(value name)) |
type name(array([ < value literal < , value literal >* >? ])) |
type name(list([ < value literal < , value literal >* >? ]))

connection literal ::= connection |
connection(string)

behaviour literal ::= behaviour |
behaviour(action)

condition ::= variable |
variable operator variable |
variable operator value literal |
value literal operator variable |
value literal operator value literal |
( or | and )

or ::= evaluation ; evaluation
and ::= evaluation , evaluation

evaluation ::= condition |
or |
and

operator ::= == |
\== |
< |
=< |
> |
>=

value name ::= string
type name ::= name

behaviour name ::= name
name ::= <a-z> < <a-z> | <A-Z> | <0-9> | >*

variable ::= < <a-z> | <A-Z> | <0-9> | >*
string ::= ’ < <a-z> | <A-Z> | <0-9> >* ’

integer ::= < <0-9> >+
boolean ::= true | false
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Legend

<...>? 0 ou 1
<...>* 0 or more
<...>+ 1 or more
<a-z> a | b | c | ... | z
<A-Z> A | B | C | ... | Z
<0-9> 0 | 1 | 2 | ... | 9
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B Appendix B. First layer formalization and
implementation

B.1 Inactive process

– Syntax and semantic :

0 ≡ terminate

Type definition rule : terminate:BEHAV IOUR

– Implementation :

action(terminate).

B.2 Process instantiation

– Syntax and semantic :

P ≡ instanciate(p)

Type definition rule : p:BEHAV IOUR
instanciate(p):BEHAV IOUR

– Implementation :

action(instanciate( action 1)) :-
( action 1 = behaviour( action 2) ->

action( action 2);
process( action 1, action 2), action( action 2)).

B.3 An action preceeds a process (sequence)

– Syntax and semantic :

P.Q ≡ sequence(instanciate(p), instanciate(q))

Transition rule :
sequence(instanciate(p),instanciate(q))

instanciate(p)−→ instanciate(q)

Type definition rule : p:BEHAV IOUR q:BEHAV IOUR
sequence(instanciate(p),instanciate(q)):BEHAV IOUR

– Implementation :

action(sequence( action 1, action 2)) :-
action( action 1),
action( action 2).
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B.4 Positive prefix

– Syntax and semantic :

x(y) ≡ receive(X, Y)

Transition rule :
sequence(receive(X,Y ),instanciate(p))

receive(X,Y )−→ instanciate(p)

Type definition rule : X:CONNECTION Y :TY PE p:BEHAV IOUR
sequence(receive(X,Y ),instanciate(p)):BEHAV IOUR

– Implementation :

action(receive( connection)) :-
(clause(receive( connection), true) ->

retract(receive( connection));
action(receive( connection))).

action(receive( connection, value 1)) :-
(clause(receive( connection, value 2), true) ->

retract(receive( connection, value 2)), value 1 = value 2;
action(receive( connection, value 1))).

B.5 Negative prefix

– Syntax and semantic :

x̄y ≡ send(X, Y)

Transition rule :
sequence(send(X,Y ),instanciate(p))

send(X,Y )−→ instanciate(p)

Type definition rule : X:CONNECTION Y :TY PE p:BEHAV IOUR
sequence(send(X,Y ),instanciate(p)):BEHAV IOUR

– Implementation :

action(send( connection)) :-
( connection == connection(’request’) ->

request( value);
assert(receive( connection))).

action(send( connection, value)) :-
( connection == connection(’request’) ->

request( value);
assert(receive( connection, value))).
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B.6 Silent prefix

– Syntax and semantic :

τ ≡ unobservable

Transition rule :
sequence(unobservable,instanciate(p))

unobservable−→ instanciate(p)

Type definition rule : p:BEHAV IOUR
sequence(unobservable,instanciate(p)):BEHAV IOUR

– Implementation :

action(unobservable).

B.7 Paralell actions

– Syntax and semantic :

P — Q ≡ parallel split([instanciate(p), instanciate(q)])

Transition rule :
p
α−→p′

parallel split([instanciate(p),instanciate(q)])
α−→parallel split([instanciate(p′),instanciate(q)])

q
α−→q′

parallel split([instanciate(p),instanciate(q)])
α−→parallel split([instanciate(p),instanciate(q′)])

Type definition rule : p:BEHAV IOUR q:BEHAV IOUR
parallel split([instanciate(p),instanciate(q)]):BEHAV IOUR

– Implementation :

action(parallel split( actions)) :-
action(parallel split( actions, [])).

action(parallel split([ action 1 | action 2], threads)) :-
thread create(action( action 1), id),
( action 2 == [] ->

thread join([ id | threads], );
action(parallel split( action 2, [ id | threads]))).

B.8 Non-determinist summation

– Syntax and semantic :

P + Q ≡ defered choice([instanciate(p), instanciate(q)])

Transition rule : p
α−→p′

defered choice([instanciate(p),instanciate(q)])
α−→instanciate(p′)

q
α−→q′

defered choice([instanciate(p),instanciate(q)])
α−→instanciate(q′)

Type definition rule : p:BEHAV IOUR q:BEHAV IOUR
parallel split([instanciate(p),instanciate(q)]):BEHAV IOUR
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– Implementation :

action(defered choice( actions)) :-
length( actions, length),
max is length+1,

random(1, max, choice),
ith( choice, actions, action),
action( action).

B.9 Matching

– Syntax and semantic :

[x = y] P ≡ if then(C, instanciate(p))
ou if then else(C, instanciate(p), instanciate(q))

Transition rules :
if then(C,instanciate(p))

α−→instanciate(p)
if C is true

if then(C,instanciate(p))
α−→terminate

if C is false

if then else(C,instanciate(p),instanciate(q))
α−→instanciate(p)

if C is true

if then else(C,instanciate(p),instanciate(q))
α−→instanciate(q)

if C is false

Type definition rule : C:BOOLEAN p:BEHAV IOUR
if then(C,instanciate(p)):BEHAV IOUR

C:BOOLEAN p:BEHAV IOUR q:BEHAV IOUR
if then(C,instanciate(p),instanciate(q)):BEHAV IOUR

– Implementation :

action(if then( condition, action)) :-
(call( condition) ->

action( action);
true).

action(if then else( condition, action 1, action 2)) :-
(call( condition) ->

action( action 1);
action( action 2)).
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Legend

– CONNECTION
Type corresponding to an inter-process communication channel,

– BEHAVIOUR
Type corresponding to a process,

– TYPE
Generique type corresponding to any base type : CONNECTION, BEHAVIOUR,
BOOLEAN, FLOAT, INTEGER, STRING.
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C Appendix C. Workflow patterns formalization

C.1 Sequence

This pattern corresponds to the sequence operator of the first layer.

C.2 Parallel Split

This pattern corresponds to the parallel split operator of the first layer.

C.3 Synchronization

process(
synchronize(connections( connections)),
behaviour(

iterate(connections( connections), connection( connection),
receive(connection( connection))))).

C.4 Exclusive Choice

This pattern corresponds to the if then else operator of the first layer.

C.5 Simple Merge

This pattern corresponds to the sequence (sequence operator) of the if then else
operator and any other behaviour.

C.6 Multi Choice

type(tests, array(test)).
type(test, list([condition( condition), behaviour( behaviour)])).

process(
choice(test(list([condition( condition), behaviour( behaviour)]),

connection( connection))),
behaviour(

parallel split([
if then else(condition( condition),

sequence(send(connection( connection), true),
instanciate(behaviour( behaviour))),

send(connection( connection), false))]))).

process(
multi choice(tests( tests), connection( connection)),
behaviour(

iterate(tests( tests), test( test),
instanciate(choice(test( test), connection( connection)))))).
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C.7 Structured Synchronizing Merge

type(synchronizings, array(synchronizing)).
type(synchronizing, list([connection( connection 1), connection( connection 2)])).

process(
sync(synchronizing(list([connection( connection 1), connection( connection 2)]))),
behaviour(

sequence(receive(connection( connection 1), condition),
if then( condition, receive(connection( connection 2)))))).

process(
synchronizing merge(synchronizings( synchronizings)),
behaviour(

iterate(synchronizings( synchronizings), synchronizing( synchronizing),
instanciate(sync(synchronizing( synchronizing)))))).

C.8 Multi Merge

process(
multi merge(connection( connection), behaviour( behaviour)),
behaviour(

sequence(receive(connection( connection)),
parallel split([

instanciate(multi merge(connection( connection), behaviour( behaviour))),

instanciate(behaviour( behaviour))])))).

C.9 Discriminator

This pattern corresponds to the use of the synchronize pattern with only one
connection as parameter.

C.10 Arbitrary Cycles

process(
cycle(connection( connection), behaviour( behaviour)),
behaviour(

parallel split([

sequence(receive(connection( connection)),
instanciate(cycle(connection( connection), behaviour( behaviour)))),

instanciate(behaviour( behaviour))]))).



24 Frédéric Pourraz and Hervé Verjus

C.11 Implicit Termination

This pattern corresponds to the omission of the terminate operator.

C.12 Multi Instances without Synchronization

process(
multi instances(connection( connection)),
behaviour(

sequence(receive(connection( connection), process( process)),
parallel split([

instanciate(multi instances(connection( connection))),

instanciate( process)])))).

C.13 Multi Instances with a Priori Design Time Knowledge or with
a Priori Runtime Knowledge

type(processes, array(process)).

process(
multi instances with sync(processes( processes)),
behaviour(

parallel split([

instanciate(multi instances(connection(’setProcess’))),

iterate(processes( processes), process( process),
send(connection(’setProcess’),
behaviour(sequence(instanciate( process), send(connection(’getSync’)))))),

iterate(processes( processes), receive(connection(’getSync’)))]))).
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C.14 Multi Instances without a Priori Runtime Knowledge

process(
multi instances with sync(processes( processes 1), connection( connection)),
behaviour(

parallel split([

instanciate(multi instances(connection(’setProcess’))),

iterate(processes( processes 1), process( process),
send(connection(’setProcess’),
behaviour(sequence(instanciate( process), send(connection(’getSync’)))))),

sequence(iterate(processes( processes 1), receive(connection(’getSync’))),
if then(receive(connection( connection), processes( processes 2)),

instanciate(multi instances with sync(processes( processes 2)))))]))).

C.15 Deferred Choice

This pattern corresponds to the deferred choice operator of the first layer.

C.16 Interleaved Parallel Routing

process(
interleaved parallel routing(connection( connection 1), connection( connection 2)),
behaviour(

sequence(receive(connection( connection 1), connection( connection 3)),
sequence(receive(connection( connection 2), connection( connection 4)),
deferred choice([

sequence(send(connection( connection 1)),
sequence(receive(connection( connection 1)),
send(connection( connection 2)))),

sequence(send(connection( connection 2)),
sequence(receive(connection( connection 2)),
send(connection( connection 1))))]))))).
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C.17 Milestone

process(
milestone test(connection( connection 1), connection( connection 2)),
behaviour(

sequence(send(connection( connection 1), connection( connection 2)),
receive(connection( connection 2))))).

process(
milestone reached(connection( connection 1)),
behaviour(

sequence(receive(connection( connection 1), connection( connection 2)),
send(connection( connection 2))))).

C.18 Cancel Activity

process(
cancel activity(behaviour( behaviour)),
behaviour(

if then(\+ receive(connection(’cancel’)),
/* The ’cancel’ connection is managed by the evolver process */

instanciate(behaviour( behaviour))))).

C.19 Cancel Case

process(
cancel case(behaviour( behaviour)),
behaviour(

if then else(receive(connection(’cancel’)),
/* The ’cancel’ connection is managed by the evolver process */

terminate,
instanciate(behaviour( behaviour))))).


